Garage v0.9 #473
2 changed files with 137 additions and 77 deletions
|
@ -206,7 +206,6 @@ impl Graph<FlowEdge>{
|
||||||
//There is no residual flow
|
//There is no residual flow
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
//Now we run DFS respecting the level array
|
//Now we run DFS respecting the level array
|
||||||
let mut next_nbd = vec![0; nb_vertices];
|
let mut next_nbd = vec![0; nb_vertices];
|
||||||
let mut lifo = VecDeque::new();
|
let mut lifo = VecDeque::new();
|
||||||
|
@ -220,15 +219,13 @@ impl Graph<FlowEdge>{
|
||||||
//The DFS reached the sink, we can add a
|
//The DFS reached the sink, we can add a
|
||||||
//residual flow.
|
//residual flow.
|
||||||
lifo.pop_back();
|
lifo.pop_back();
|
||||||
while !lifo.is_empty() {
|
while let Some((id, _)) = lifo.pop_back() {
|
||||||
if let Some((id, _)) = lifo.pop_back() {
|
|
||||||
let nbd = next_nbd[id];
|
let nbd = next_nbd[id];
|
||||||
self.graph[id][nbd].flow += f as i32;
|
self.graph[id][nbd].flow += f as i32;
|
||||||
let id_rev = self.graph[id][nbd].dest;
|
let id_rev = self.graph[id][nbd].dest;
|
||||||
let nbd_rev = self.graph[id][nbd].rev;
|
let nbd_rev = self.graph[id][nbd].rev;
|
||||||
self.graph[id_rev][nbd_rev].flow -= f as i32;
|
self.graph[id_rev][nbd_rev].flow -= f as i32;
|
||||||
}
|
}
|
||||||
}
|
|
||||||
lifo.push_back((idsource, flow_upper_bound));
|
lifo.push_back((idsource, flow_upper_bound));
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
@ -243,10 +240,14 @@ impl Graph<FlowEdge>{
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
//else we can try to send flow from id to its nbd
|
//else we can try to send flow from id to its nbd
|
||||||
let new_flow = min(f, self.graph[id][nbd].cap - self.graph[id][nbd].flow as u32 );
|
let new_flow = min(f as i32, self.graph[id][nbd].cap as i32 - self.graph[id][nbd].flow) as u32;
|
||||||
|
if new_flow == 0 {
|
||||||
|
next_nbd[id] += 1;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
if let (Some(lvldest), Some(lvlid)) =
|
if let (Some(lvldest), Some(lvlid)) =
|
||||||
(level[self.graph[id][nbd].dest], level[id]){
|
(level[self.graph[id][nbd].dest], level[id]){
|
||||||
if lvldest <= lvlid || new_flow == 0 {
|
if lvldest <= lvlid {
|
||||||
//We cannot send flow to nbd.
|
//We cannot send flow to nbd.
|
||||||
next_nbd[id] += 1;
|
next_nbd[id] += 1;
|
||||||
continue;
|
continue;
|
||||||
|
@ -266,7 +267,6 @@ impl Graph<FlowEdge>{
|
||||||
// one needs to be present in the cost function.
|
// one needs to be present in the cost function.
|
||||||
pub fn optimize_flow_with_cost(&mut self , cost: &CostFunction, path_length: usize )
|
pub fn optimize_flow_with_cost(&mut self , cost: &CostFunction, path_length: usize )
|
||||||
-> Result<(),String>{
|
-> Result<(),String>{
|
||||||
|
|
||||||
//We build the weighted graph g where we will look for negative cycle
|
//We build the weighted graph g where we will look for negative cycle
|
||||||
let mut gf = self.build_cost_graph(cost)?;
|
let mut gf = self.build_cost_graph(cost)?;
|
||||||
let mut cycles = gf.list_negative_cycles(path_length);
|
let mut cycles = gf.list_negative_cycles(path_length);
|
||||||
|
@ -364,6 +364,7 @@ impl Graph<WeightedEdge>{
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
//If self.graph contains a negative cycle, then at this point the graph described
|
//If self.graph contains a negative cycle, then at this point the graph described
|
||||||
//by prev (which is a directed 1-forest/functional graph)
|
//by prev (which is a directed 1-forest/functional graph)
|
||||||
//must contain a cycle. We list the cycles of prev.
|
//must contain a cycle. We list the cycles of prev.
|
||||||
|
@ -401,8 +402,9 @@ fn cycles_of_1_forest(forest: &[Option<usize>]) -> Vec<Vec<usize>> {
|
||||||
//We discovered an id that we explored at this iteration t.
|
//We discovered an id that we explored at this iteration t.
|
||||||
//It means we are on a cycle
|
//It means we are on a cycle
|
||||||
let mut cy = vec![id; 1];
|
let mut cy = vec![id; 1];
|
||||||
let id2 = id;
|
let mut id2 = id;
|
||||||
while let Some(id2) = forest[id2] {
|
while let Some(id_next) = forest[id2] {
|
||||||
|
id2 = id_next;
|
||||||
if id2 != id {
|
if id2 != id {
|
||||||
cy.push(id2);
|
cy.push(id2);
|
||||||
}
|
}
|
||||||
|
@ -429,12 +431,5 @@ fn cycles_of_1_forest(forest: &[Option<usize>]) -> Vec<Vec<usize>> {
|
||||||
mod tests {
|
mod tests {
|
||||||
use super::*;
|
use super::*;
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn test_flow() {
|
|
||||||
let left_vec = vec![3; 8];
|
|
||||||
let right_vec = vec![0, 4, 8, 4, 8];
|
|
||||||
//There are asserts in the function that computes the flow
|
|
||||||
}
|
}
|
||||||
|
|
||||||
//maybe add tests relative to the matching optilization ?
|
|
||||||
}
|
|
||||||
|
|
|
@ -3,6 +3,7 @@ use std::collections::HashMap;
|
||||||
use std::collections::HashSet;
|
use std::collections::HashSet;
|
||||||
|
|
||||||
use hex::ToHex;
|
use hex::ToHex;
|
||||||
|
use itertools::Itertools;
|
||||||
|
|
||||||
use serde::{Deserialize, Serialize};
|
use serde::{Deserialize, Serialize};
|
||||||
|
|
||||||
|
@ -185,7 +186,8 @@ impl ClusterLayout {
|
||||||
pub fn get_node_capacity(&self, uuid : &Uuid) -> Result<u32,String> {
|
pub fn get_node_capacity(&self, uuid : &Uuid) -> Result<u32,String> {
|
||||||
match self.node_role(uuid) {
|
match self.node_role(uuid) {
|
||||||
Some(NodeRole{capacity : Some(cap), zone: _, tags: _}) => return Ok(*cap),
|
Some(NodeRole{capacity : Some(cap), zone: _, tags: _}) => return Ok(*cap),
|
||||||
_ => return Err("The Uuid does not correspond to a node present in the cluster or this node does not have a positive capacity.".to_string())
|
_ => return Err("The Uuid does not correspond to a node present in the \
|
||||||
|
cluster or this node does not have a positive capacity.".to_string())
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -242,6 +244,47 @@ impl ClusterLayout {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//Check that every partition is associated to distinct nodes
|
||||||
|
let rf = self.replication_factor;
|
||||||
|
for p in 0..(1 << PARTITION_BITS) {
|
||||||
|
let nodes_of_p = self.ring_assignation_data[rf*p..rf*(p+1)].to_vec();
|
||||||
|
if nodes_of_p.iter().unique().count() != rf {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
//Check that every partition is spread over at least zone_redundancy zones.
|
||||||
|
let zones_of_p = nodes_of_p.iter()
|
||||||
|
.map(|n| self.get_node_zone(&self.node_id_vec[*n as usize])
|
||||||
|
.expect("Zone not found."));
|
||||||
|
if zones_of_p.unique().count() < self.zone_redundancy {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//Check that the nodes capacities is consistent with the stored partitions
|
||||||
|
let mut node_usage = vec![0; MAX_NODE_NUMBER];
|
||||||
|
for n in self.ring_assignation_data.iter() {
|
||||||
|
node_usage[*n as usize] += 1;
|
||||||
|
}
|
||||||
|
for n in 0..MAX_NODE_NUMBER {
|
||||||
|
if node_usage[n] > 0 {
|
||||||
|
let uuid = self.node_id_vec[n];
|
||||||
|
if node_usage[n]*self.partition_size > self.get_node_capacity(&uuid)
|
||||||
|
.expect("Critical Error"){
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//Check that the partition size stored is the one computed by the asignation
|
||||||
|
//algorithm.
|
||||||
|
let cl2 = self.clone();
|
||||||
|
let (_ , zone_to_id) = cl2.generate_zone_ids().expect("Critical Error");
|
||||||
|
let partition_size = cl2.compute_optimal_partition_size(&zone_to_id).expect("Critical Error");
|
||||||
|
if partition_size != self.partition_size {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
true
|
true
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -267,7 +310,7 @@ impl ClusterLayout {
|
||||||
self.zone_redundancy = redundancy;
|
self.zone_redundancy = redundancy;
|
||||||
|
|
||||||
let mut msg = Message::new();
|
let mut msg = Message::new();
|
||||||
msg.push(format!("Computation of a new cluster layout where partitions are
|
msg.push(format!("Computation of a new cluster layout where partitions are \
|
||||||
replicated {} times on at least {} distinct zones.", replication, redundancy));
|
replicated {} times on at least {} distinct zones.", replication, redundancy));
|
||||||
|
|
||||||
//We generate for once numerical ids for the zone, to use them as indices in the
|
//We generate for once numerical ids for the zone, to use them as indices in the
|
||||||
|
@ -278,14 +321,17 @@ impl ClusterLayout {
|
||||||
self.useful_nodes().len(), id_to_zone.len()));
|
self.useful_nodes().len(), id_to_zone.len()));
|
||||||
|
|
||||||
//We compute the optimal partition size
|
//We compute the optimal partition size
|
||||||
|
//Capacities should be given in a unit so that partition size is at least 100.
|
||||||
|
//In this case, integer rounding plays a marginal role in the percentages of
|
||||||
|
//optimality.
|
||||||
let partition_size = self.compute_optimal_partition_size(&zone_to_id)?;
|
let partition_size = self.compute_optimal_partition_size(&zone_to_id)?;
|
||||||
if old_assignation_opt != None {
|
if old_assignation_opt != None {
|
||||||
msg.push(format!("Given the replication and redundancy constraint, the
|
msg.push(format!("Given the replication and redundancy constraint, the \
|
||||||
optimal size of a partition is {}. In the previous layout, it used to
|
optimal size of a partition is {}. In the previous layout, it used to \
|
||||||
be {}.", partition_size, self.partition_size));
|
be {}.", partition_size, self.partition_size));
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
msg.push(format!("Given the replication and redundancy constraints, the
|
msg.push(format!("Given the replication and redundancy constraints, the \
|
||||||
optimal size of a partition is {}.", partition_size));
|
optimal size of a partition is {}.", partition_size));
|
||||||
}
|
}
|
||||||
self.partition_size = partition_size;
|
self.partition_size = partition_size;
|
||||||
|
@ -293,13 +339,13 @@ impl ClusterLayout {
|
||||||
//We compute a first flow/assignment that is heuristically close to the previous
|
//We compute a first flow/assignment that is heuristically close to the previous
|
||||||
//assignment
|
//assignment
|
||||||
let mut gflow = self.compute_candidate_assignment( &zone_to_id, &old_assignation_opt)?;
|
let mut gflow = self.compute_candidate_assignment( &zone_to_id, &old_assignation_opt)?;
|
||||||
|
|
||||||
if let Some(assoc) = &old_assignation_opt {
|
if let Some(assoc) = &old_assignation_opt {
|
||||||
//We minimize the distance to the previous assignment.
|
//We minimize the distance to the previous assignment.
|
||||||
self.minimize_rebalance_load(&mut gflow, &zone_to_id, &assoc)?;
|
self.minimize_rebalance_load(&mut gflow, &zone_to_id, &assoc)?;
|
||||||
}
|
}
|
||||||
|
|
||||||
msg.append(&mut self.output_stat(&gflow, &old_assignation_opt, &zone_to_id,&id_to_zone)?);
|
msg.append(&mut self.output_stat(&gflow, &old_assignation_opt, &zone_to_id,&id_to_zone)?);
|
||||||
|
msg.push("".to_string());
|
||||||
|
|
||||||
//We update the layout structure
|
//We update the layout structure
|
||||||
self.update_ring_from_flow(id_to_zone.len() , &gflow)?;
|
self.update_ring_from_flow(id_to_zone.len() , &gflow)?;
|
||||||
|
@ -321,7 +367,8 @@ impl ClusterLayout {
|
||||||
.map(|(k, _, _)| *k).collect();
|
.map(|(k, _, _)| *k).collect();
|
||||||
|
|
||||||
if new_non_gateway_nodes.len() > MAX_NODE_NUMBER {
|
if new_non_gateway_nodes.len() > MAX_NODE_NUMBER {
|
||||||
return Err(format!("There are more than {} non-gateway nodes in the new layout. This is not allowed.", MAX_NODE_NUMBER).to_string());
|
return Err(format!("There are more than {} non-gateway nodes in the new \
|
||||||
|
layout. This is not allowed.", MAX_NODE_NUMBER).to_string());
|
||||||
}
|
}
|
||||||
|
|
||||||
let mut new_gateway_nodes: Vec<Uuid> = self.roles.items().iter()
|
let mut new_gateway_nodes: Vec<Uuid> = self.roles.items().iter()
|
||||||
|
@ -346,7 +393,8 @@ impl ClusterLayout {
|
||||||
return Ok(None);
|
return Ok(None);
|
||||||
}
|
}
|
||||||
if self.ring_assignation_data.len() != nb_partitions * self.replication_factor {
|
if self.ring_assignation_data.len() != nb_partitions * self.replication_factor {
|
||||||
return Err("The old assignation does not have a size corresponding to the old replication factor or the number of partitions.".to_string());
|
return Err("The old assignation does not have a size corresponding to \
|
||||||
|
the old replication factor or the number of partitions.".to_string());
|
||||||
}
|
}
|
||||||
|
|
||||||
//We build a translation table between the uuid and new ids
|
//We build a translation table between the uuid and new ids
|
||||||
|
@ -384,7 +432,8 @@ impl ClusterLayout {
|
||||||
|
|
||||||
for uuid in self.node_id_vec.iter() {
|
for uuid in self.node_id_vec.iter() {
|
||||||
if self.roles.get(uuid) == None {
|
if self.roles.get(uuid) == None {
|
||||||
return Err("The uuid was not found in the node roles (this should not happen, it might be a critical error).".to_string());
|
return Err("The uuid was not found in the node roles (this should \
|
||||||
|
not happen, it might be a critical error).".to_string());
|
||||||
}
|
}
|
||||||
match self.node_role(&uuid) {
|
match self.node_role(&uuid) {
|
||||||
Some(r) => if !zone_to_id.contains_key(&r.zone) && r.capacity != None {
|
Some(r) => if !zone_to_id.contains_key(&r.zone) && r.capacity != None {
|
||||||
|
@ -405,7 +454,8 @@ impl ClusterLayout {
|
||||||
let mut g = self.generate_flow_graph(1, zone_to_id, &empty_set)?;
|
let mut g = self.generate_flow_graph(1, zone_to_id, &empty_set)?;
|
||||||
g.compute_maximal_flow()?;
|
g.compute_maximal_flow()?;
|
||||||
if g.get_flow_value()? < (nb_partitions*self.replication_factor).try_into().unwrap() {
|
if g.get_flow_value()? < (nb_partitions*self.replication_factor).try_into().unwrap() {
|
||||||
return Err("The storage capacity of he cluster is to small. It is impossible to store partitions of size 1.".to_string());
|
return Err("The storage capacity of he cluster is to small. It is \
|
||||||
|
impossible to store partitions of size 1.".to_string());
|
||||||
}
|
}
|
||||||
|
|
||||||
let mut s_down = 1;
|
let mut s_down = 1;
|
||||||
|
@ -525,7 +575,8 @@ impl ClusterLayout {
|
||||||
}
|
}
|
||||||
|
|
||||||
if self.ring_assignation_data.len() != NB_PARTITIONS*self.replication_factor {
|
if self.ring_assignation_data.len() != NB_PARTITIONS*self.replication_factor {
|
||||||
return Err("Critical Error : the association ring we produced does not have the right size.".to_string());
|
return Err("Critical Error : the association ring we produced does not \
|
||||||
|
have the right size.".to_string());
|
||||||
}
|
}
|
||||||
return Ok(());
|
return Ok(());
|
||||||
}
|
}
|
||||||
|
@ -546,9 +597,16 @@ impl ClusterLayout {
|
||||||
let percent_cap = 100.0*(used_cap as f32)/(total_cap as f32);
|
let percent_cap = 100.0*(used_cap as f32)/(total_cap as f32);
|
||||||
msg.push(format!("Available capacity / Total cluster capacity: {} / {} ({:.1} %)",
|
msg.push(format!("Available capacity / Total cluster capacity: {} / {} ({:.1} %)",
|
||||||
used_cap , total_cap , percent_cap ));
|
used_cap , total_cap , percent_cap ));
|
||||||
msg.push(format!("If the percentage is to low, it might be that the replication/redundancy constraints force the use of nodes/zones with small storage capacities.
|
msg.push(format!(""));
|
||||||
You might want to rebalance the storage capacities or relax the constraints. See the detailed statistics below and look for saturated nodes/zones."));
|
msg.push(format!("If the percentage is to low, it might be that the \
|
||||||
msg.push(format!("Recall that because of the replication, the actual available storage capacity is {} / {} = {}.", used_cap , self.replication_factor , used_cap/self.replication_factor as u32));
|
replication/redundancy constraints force the use of nodes/zones with small \
|
||||||
|
storage capacities. \
|
||||||
|
You might want to rebalance the storage capacities or relax the constraints. \
|
||||||
|
See the detailed statistics below and look for saturated nodes/zones."));
|
||||||
|
msg.push(format!("Recall that because of the replication, the actual available \
|
||||||
|
storage capacity is {} / {} = {}.",
|
||||||
|
used_cap , self.replication_factor ,
|
||||||
|
used_cap/self.replication_factor as u32));
|
||||||
|
|
||||||
//We define and fill in the following tables
|
//We define and fill in the following tables
|
||||||
let storing_nodes = self.useful_nodes();
|
let storing_nodes = self.useful_nodes();
|
||||||
|
@ -563,17 +621,6 @@ impl ClusterLayout {
|
||||||
let pz_nodes = gflow.get_positive_flow_from(Vertex::PZ(p,z))?;
|
let pz_nodes = gflow.get_positive_flow_from(Vertex::PZ(p,z))?;
|
||||||
if pz_nodes.len() > 0 {
|
if pz_nodes.len() > 0 {
|
||||||
stored_partitions_zone[z] += 1;
|
stored_partitions_zone[z] += 1;
|
||||||
}
|
|
||||||
for vert in pz_nodes.iter() {
|
|
||||||
if let Vertex::N(n) = *vert {
|
|
||||||
stored_partitions[n] += 1;
|
|
||||||
if let Some(old_assoc) = old_assoc_opt {
|
|
||||||
if !old_assoc[p].contains(&n) {
|
|
||||||
new_partitions[n] += 1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if let Some(old_assoc) = old_assoc_opt {
|
if let Some(old_assoc) = old_assoc_opt {
|
||||||
let mut old_zones_of_p = Vec::<usize>::new();
|
let mut old_zones_of_p = Vec::<usize>::new();
|
||||||
for n in old_assoc[p].iter() {
|
for n in old_assoc[p].iter() {
|
||||||
|
@ -585,10 +632,27 @@ impl ClusterLayout {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
for vert in pz_nodes.iter() {
|
||||||
|
if let Vertex::N(n) = *vert {
|
||||||
|
stored_partitions[n] += 1;
|
||||||
|
if let Some(old_assoc) = old_assoc_opt {
|
||||||
|
if !old_assoc[p].contains(&n) {
|
||||||
|
new_partitions[n] += 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if *old_assoc_opt == None {
|
||||||
|
new_partitions = stored_partitions.clone();
|
||||||
|
new_partitions_zone = stored_partitions_zone.clone();
|
||||||
}
|
}
|
||||||
|
|
||||||
//We display the statistics
|
//We display the statistics
|
||||||
|
|
||||||
|
msg.push(format!(""));
|
||||||
if *old_assoc_opt != None {
|
if *old_assoc_opt != None {
|
||||||
let total_new_partitions : usize = new_partitions.iter().sum();
|
let total_new_partitions : usize = new_partitions.iter().sum();
|
||||||
msg.push(format!("A total of {} new copies of partitions need to be \
|
msg.push(format!("A total of {} new copies of partitions need to be \
|
||||||
|
@ -608,16 +672,9 @@ impl ClusterLayout {
|
||||||
.map(|n| stored_partitions[*n]).sum();
|
.map(|n| stored_partitions[*n]).sum();
|
||||||
msg.push(format!(""));
|
msg.push(format!(""));
|
||||||
|
|
||||||
if *old_assoc_opt != None {
|
|
||||||
msg.push(format!("Zone {}: {} distinct partitions stored ({} new, \
|
msg.push(format!("Zone {}: {} distinct partitions stored ({} new, \
|
||||||
{} partition copies) ", id_to_zone[z], stored_partitions_zone[z],
|
{} partition copies) ", id_to_zone[z], stored_partitions_zone[z],
|
||||||
new_partitions_zone[z], replicated_partitions));
|
new_partitions_zone[z], replicated_partitions));
|
||||||
}
|
|
||||||
else{
|
|
||||||
msg.push(format!("Zone {}: {} distinct partitions stored ({} partition \
|
|
||||||
copies) ",
|
|
||||||
id_to_zone[z], stored_partitions_zone[z], replicated_partitions));
|
|
||||||
}
|
|
||||||
|
|
||||||
let available_cap_z : u32 = self.partition_size*replicated_partitions as u32;
|
let available_cap_z : u32 = self.partition_size*replicated_partitions as u32;
|
||||||
let mut total_cap_z = 0;
|
let mut total_cap_z = 0;
|
||||||
|
@ -627,7 +684,6 @@ impl ClusterLayout {
|
||||||
let percent_cap_z = 100.0*(available_cap_z as f32)/(total_cap_z as f32);
|
let percent_cap_z = 100.0*(available_cap_z as f32)/(total_cap_z as f32);
|
||||||
msg.push(format!(" Available capacity / Total capacity: {}/{} ({:.1}%).",
|
msg.push(format!(" Available capacity / Total capacity: {}/{} ({:.1}%).",
|
||||||
available_cap_z, total_cap_z, percent_cap_z));
|
available_cap_z, total_cap_z, percent_cap_z));
|
||||||
msg.push(format!(""));
|
|
||||||
|
|
||||||
for n in nodes_of_z.iter() {
|
for n in nodes_of_z.iter() {
|
||||||
let available_cap_n = stored_partitions[*n] as u32 *self.partition_size;
|
let available_cap_n = stored_partitions[*n] as u32 *self.partition_size;
|
||||||
|
@ -636,7 +692,7 @@ impl ClusterLayout {
|
||||||
.ok_or("Node not found."))?.tags_string();
|
.ok_or("Node not found."))?.tags_string();
|
||||||
msg.push(format!(" Node {}: {} partitions ({} new) ; \
|
msg.push(format!(" Node {}: {} partitions ({} new) ; \
|
||||||
available/total capacity: {} / {} ({:.1}%) ; tags:{}",
|
available/total capacity: {} / {} ({:.1}%) ; tags:{}",
|
||||||
&self.node_id_vec[*n].to_vec().encode_hex::<String>(),
|
&self.node_id_vec[*n].to_vec()[0..2].to_vec().encode_hex::<String>(),
|
||||||
stored_partitions[*n],
|
stored_partitions[*n],
|
||||||
new_partitions[*n], available_cap_n, total_cap_n,
|
new_partitions[*n], available_cap_n, total_cap_n,
|
||||||
(available_cap_n as f32)/(total_cap_n as f32)*100.0 ,
|
(available_cap_n as f32)/(total_cap_n as f32)*100.0 ,
|
||||||
|
@ -654,16 +710,14 @@ impl ClusterLayout {
|
||||||
#[cfg(test)]
|
#[cfg(test)]
|
||||||
mod tests {
|
mod tests {
|
||||||
use super::*;
|
use super::*;
|
||||||
use itertools::Itertools;
|
use std::io::*;
|
||||||
|
// use itertools::Itertools;
|
||||||
|
/*
|
||||||
fn check_assignation(cl: &ClusterLayout) {
|
fn check_assignation(cl: &ClusterLayout) {
|
||||||
//Check that input data has the right format
|
//Check that input data has the right format
|
||||||
let nb_partitions = 1usize << PARTITION_BITS;
|
let nb_partitions = 1usize << PARTITION_BITS;
|
||||||
assert!([1, 2, 3].contains(&cl.replication_factor));
|
|
||||||
assert!(cl.ring_assignation_data.len() == nb_partitions * cl.replication_factor);
|
assert!(cl.ring_assignation_data.len() == nb_partitions * cl.replication_factor);
|
||||||
|
|
||||||
let (node_zone, node_capacity) = cl.get_node_zone_capacity();
|
|
||||||
|
|
||||||
//Check that is is a correct assignation with zone redundancy
|
//Check that is is a correct assignation with zone redundancy
|
||||||
let rf = cl.replication_factor;
|
let rf = cl.replication_factor;
|
||||||
for i in 0..nb_partitions {
|
for i in 0..nb_partitions {
|
||||||
|
@ -743,6 +797,13 @@ mod tests {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
|
fn show_msg(msg : &Message) {
|
||||||
|
for s in msg.iter(){
|
||||||
|
println!("{}",s);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
fn update_layout(
|
fn update_layout(
|
||||||
cl: &mut ClusterLayout,
|
cl: &mut ClusterLayout,
|
||||||
|
@ -769,6 +830,7 @@ mod tests {
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_assignation() {
|
fn test_assignation() {
|
||||||
|
std::io::stdout().flush().ok().expect("Could not flush stdout");
|
||||||
let mut node_id_vec = vec![1, 2, 3];
|
let mut node_id_vec = vec![1, 2, 3];
|
||||||
let mut node_capacity_vec = vec![4000, 1000, 2000];
|
let mut node_capacity_vec = vec![4000, 1000, 2000];
|
||||||
let mut node_zone_vec = vec!["A", "B", "C"]
|
let mut node_zone_vec = vec!["A", "B", "C"]
|
||||||
|
@ -782,14 +844,16 @@ mod tests {
|
||||||
roles: LwwMap::new(),
|
roles: LwwMap::new(),
|
||||||
|
|
||||||
replication_factor: 3,
|
replication_factor: 3,
|
||||||
|
zone_redundancy: 1,
|
||||||
|
partition_size: 0,
|
||||||
ring_assignation_data: vec![],
|
ring_assignation_data: vec![],
|
||||||
version: 0,
|
version: 0,
|
||||||
staging: LwwMap::new(),
|
staging: LwwMap::new(),
|
||||||
staging_hash: sha256sum(&[1; 32]),
|
staging_hash: blake2sum(&rmp_to_vec_all_named(&LwwMap::<Uuid, NodeRoleV>::new()).unwrap()[..]),
|
||||||
};
|
};
|
||||||
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
|
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
|
||||||
cl.calculate_partition_assignation();
|
show_msg(&cl.calculate_partition_assignation(3,3).unwrap());
|
||||||
check_assignation(&cl);
|
assert!(cl.check());
|
||||||
|
|
||||||
node_id_vec = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
|
node_id_vec = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
|
||||||
node_capacity_vec = vec![4000, 1000, 1000, 3000, 1000, 1000, 2000, 10000, 2000];
|
node_capacity_vec = vec![4000, 1000, 1000, 3000, 1000, 1000, 2000, 10000, 2000];
|
||||||
|
@ -798,17 +862,18 @@ mod tests {
|
||||||
.map(|x| x.to_string())
|
.map(|x| x.to_string())
|
||||||
.collect();
|
.collect();
|
||||||
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
|
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
|
||||||
cl.calculate_partition_assignation();
|
show_msg(&cl.calculate_partition_assignation(3,3).unwrap());
|
||||||
check_assignation(&cl);
|
assert!(cl.check());
|
||||||
|
|
||||||
node_capacity_vec = vec![4000, 1000, 2000, 7000, 1000, 1000, 2000, 10000, 2000];
|
node_capacity_vec = vec![4000, 1000, 2000, 7000, 1000, 1000, 2000, 10000, 2000];
|
||||||
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
|
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
|
||||||
cl.calculate_partition_assignation();
|
show_msg(&cl.calculate_partition_assignation(3,3).unwrap());
|
||||||
check_assignation(&cl);
|
assert!(cl.check());
|
||||||
|
|
||||||
node_capacity_vec = vec![4000, 4000, 2000, 7000, 1000, 9000, 2000, 10, 2000];
|
node_capacity_vec = vec![4000000, 4000000, 2000000, 7000000, 1000000, 9000000, 2000000, 10000, 2000000];
|
||||||
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
|
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
|
||||||
cl.calculate_partition_assignation();
|
show_msg(&cl.calculate_partition_assignation(3,1).unwrap());
|
||||||
check_assignation(&cl);
|
assert!(cl.check());
|
||||||
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in a new issue