|
|
|
@ -30,8 +30,8 @@ pub struct ClusterLayout {
|
|
|
|
|
|
|
|
|
|
//This attribute is only used to retain the previously computed partition size,
|
|
|
|
|
//to know to what extent does it change with the layout update.
|
|
|
|
|
#[serde(default="default_partition_size")]
|
|
|
|
|
pub partition_size: u32,
|
|
|
|
|
pub parameters: LayoutParameters,
|
|
|
|
|
|
|
|
|
|
pub roles: LwwMap<Uuid, NodeRoleV>,
|
|
|
|
|
|
|
|
|
@ -49,20 +49,11 @@ pub struct ClusterLayout {
|
|
|
|
|
pub ring_assignation_data: Vec<CompactNodeType>,
|
|
|
|
|
|
|
|
|
|
/// Role changes which are staged for the next version of the layout
|
|
|
|
|
#[serde(default="default_layout_parameters")]
|
|
|
|
|
pub parameters: Lww<LayoutParameters>,
|
|
|
|
|
pub staged_parameters: Lww<LayoutParameters>,
|
|
|
|
|
pub staging: LwwMap<Uuid, NodeRoleV>,
|
|
|
|
|
pub staging_hash: Hash,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn default_partition_size() -> u32{
|
|
|
|
|
0
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn default_layout_parameters() -> Lww<LayoutParameters>{
|
|
|
|
|
Lww::<LayoutParameters>::new(LayoutParameters{ zone_redundancy: 1})
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
///This struct is used to set the parameters to be used in the assignation computation
|
|
|
|
|
///algorithm. It is stored as a Crdt.
|
|
|
|
|
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug, Serialize, Deserialize)]
|
|
|
|
@ -124,8 +115,8 @@ impl ClusterLayout {
|
|
|
|
|
|
|
|
|
|
//We set the default zone redundancy to be equal to the replication factor,
|
|
|
|
|
//i.e. as strict as possible.
|
|
|
|
|
let default_parameters = Lww::<LayoutParameters>::new(
|
|
|
|
|
LayoutParameters{ zone_redundancy: replication_factor});
|
|
|
|
|
let parameters = LayoutParameters{ zone_redundancy: replication_factor};
|
|
|
|
|
let staged_parameters = Lww::<LayoutParameters>::new(parameters.clone());
|
|
|
|
|
|
|
|
|
|
let empty_lwwmap = LwwMap::new();
|
|
|
|
|
let empty_lwwmap_hash = blake2sum(&rmp_to_vec_all_named(&empty_lwwmap).unwrap()[..]);
|
|
|
|
@ -137,7 +128,8 @@ impl ClusterLayout {
|
|
|
|
|
roles: LwwMap::new(),
|
|
|
|
|
node_id_vec: Vec::new(),
|
|
|
|
|
ring_assignation_data: Vec::new(),
|
|
|
|
|
parameters: default_parameters,
|
|
|
|
|
parameters,
|
|
|
|
|
staged_parameters,
|
|
|
|
|
staging: empty_lwwmap,
|
|
|
|
|
staging_hash: empty_lwwmap_hash,
|
|
|
|
|
}
|
|
|
|
@ -150,8 +142,8 @@ impl ClusterLayout {
|
|
|
|
|
true
|
|
|
|
|
}
|
|
|
|
|
Ordering::Equal => {
|
|
|
|
|
let param_changed = self.parameters.get() != other.parameters.get();
|
|
|
|
|
self.parameters.merge(&other.parameters);
|
|
|
|
|
let param_changed = self.staged_parameters.get() != other.staged_parameters.get();
|
|
|
|
|
self.staged_parameters.merge(&other.staged_parameters);
|
|
|
|
|
self.staging.merge(&other.staging);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -330,7 +322,7 @@ To know the correct value of the new layout version, invoke `garage layout show`
|
|
|
|
|
let zones_of_p = nodes_of_p.iter()
|
|
|
|
|
.map(|n| self.get_node_zone(&self.node_id_vec[*n as usize])
|
|
|
|
|
.expect("Zone not found."));
|
|
|
|
|
let redundancy = self.parameters.get().zone_redundancy;
|
|
|
|
|
let redundancy = self.parameters.zone_redundancy;
|
|
|
|
|
if zones_of_p.unique().count() < redundancy {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
@ -384,7 +376,8 @@ impl ClusterLayout {
|
|
|
|
|
//changes in the layout. We retrieve the old_assignation reframed with the new ids
|
|
|
|
|
let old_assignation_opt = self.update_node_id_vec()?;
|
|
|
|
|
|
|
|
|
|
let redundancy = self.parameters.get().zone_redundancy;
|
|
|
|
|
let redundancy = self.staged_parameters.get().zone_redundancy;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let mut msg = Message::new();
|
|
|
|
|
msg.push(format!("Computation of a new cluster layout where partitions are \
|
|
|
|
@ -417,13 +410,15 @@ impl ClusterLayout {
|
|
|
|
|
if old_assignation_opt != None {
|
|
|
|
|
msg.push(format!("Given the replication and redundancy constraint, the \
|
|
|
|
|
optimal size of a partition is {}. In the previous layout, it used to \
|
|
|
|
|
be {}.", partition_size, self.partition_size));
|
|
|
|
|
be {} (the zone redundancy was {}).", partition_size, self.partition_size,
|
|
|
|
|
self.parameters.zone_redundancy));
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
msg.push(format!("Given the replication and redundancy constraints, the \
|
|
|
|
|
optimal size of a partition is {}.", partition_size));
|
|
|
|
|
}
|
|
|
|
|
self.partition_size = partition_size;
|
|
|
|
|
self.parameters = self.staged_parameters.get().clone();
|
|
|
|
|
|
|
|
|
|
if partition_size < 100 {
|
|
|
|
|
msg.push("WARNING: The partition size is low (< 100), you might consider to \
|
|
|
|
@ -512,6 +507,10 @@ impl ClusterLayout {
|
|
|
|
|
//We write the ring
|
|
|
|
|
self.ring_assignation_data = Vec::<CompactNodeType>::new();
|
|
|
|
|
|
|
|
|
|
if !self.check() {
|
|
|
|
|
return Err(Error::Message("Critical error: The computed layout happens to be incorrect".into()));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Ok(Some(old_assignation))
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -585,7 +584,7 @@ impl ClusterLayout {
|
|
|
|
|
self.useful_nodes().len());
|
|
|
|
|
let mut g= Graph::<FlowEdge>::new(&vertices);
|
|
|
|
|
let nb_zones = zone_to_id.len();
|
|
|
|
|
let redundancy = self.parameters.get().zone_redundancy;
|
|
|
|
|
let redundancy = self.staged_parameters.get().zone_redundancy;
|
|
|
|
|
for p in 0..NB_PARTITIONS {
|
|
|
|
|
g.add_edge(Vertex::Source, Vertex::Pup(p), redundancy as u32)?;
|
|
|
|
|
g.add_edge(Vertex::Source, Vertex::Pdown(p), (self.replication_factor - redundancy) as u32)?;
|
|
|
|
@ -800,95 +799,79 @@ impl ClusterLayout {
|
|
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
|
mod tests {
|
|
|
|
|
use super::*;
|
|
|
|
|
use std::io::*;
|
|
|
|
|
// use itertools::Itertools;
|
|
|
|
|
/*
|
|
|
|
|
fn check_assignation(cl: &ClusterLayout) {
|
|
|
|
|
//Check that input data has the right format
|
|
|
|
|
let nb_partitions = 1usize << PARTITION_BITS;
|
|
|
|
|
assert!(cl.ring_assignation_data.len() == nb_partitions * cl.replication_factor);
|
|
|
|
|
use super::{*,Error};
|
|
|
|
|
use std::cmp::min;
|
|
|
|
|
|
|
|
|
|
//Check that is is a correct assignation with zone redundancy
|
|
|
|
|
let rf = cl.replication_factor;
|
|
|
|
|
for i in 0..nb_partitions {
|
|
|
|
|
assert!(
|
|
|
|
|
rf == cl.ring_assignation_data[rf * i..rf * (i + 1)]
|
|
|
|
|
.iter()
|
|
|
|
|
.map(|nod| node_zone[*nod as usize].clone())
|
|
|
|
|
.unique()
|
|
|
|
|
.count()
|
|
|
|
|
);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
let nb_nodes = cl.node_id_vec.len();
|
|
|
|
|
//Check optimality
|
|
|
|
|
let node_nb_part = (0..nb_nodes)
|
|
|
|
|
.map(|i| {
|
|
|
|
|
cl.ring_assignation_data
|
|
|
|
|
.iter()
|
|
|
|
|
.filter(|x| **x == i as u8)
|
|
|
|
|
.count()
|
|
|
|
|
})
|
|
|
|
|
.collect::<Vec<_>>();
|
|
|
|
|
//This function checks that the partition size S computed is at least better than the
|
|
|
|
|
//one given by a very naive algorithm. To do so, we try to run the naive algorithm
|
|
|
|
|
//assuming a partion size of S+1. If we succed, it means that the optimal assignation
|
|
|
|
|
//was not optimal. The naive algorithm is the following :
|
|
|
|
|
//- we compute the max number of partitions associated to every node, capped at the
|
|
|
|
|
//partition number. It gives the number of tokens of every node.
|
|
|
|
|
//- every zone has a number of tokens equal to the sum of the tokens of its nodes.
|
|
|
|
|
//- we cycle over the partitions and associate zone tokens while respecting the
|
|
|
|
|
//zone redundancy constraint.
|
|
|
|
|
//NOTE: the naive algorithm is not optimal. Counter example:
|
|
|
|
|
//take nb_partition = 3 ; replication_factor = 5; redundancy = 4;
|
|
|
|
|
//number of tokens by zone : (A, 4), (B,1), (C,4), (D, 4), (E, 2)
|
|
|
|
|
//With these parameters, the naive algo fails, whereas there is a solution:
|
|
|
|
|
//(A,A,C,D,E) , (A,B,C,D,D) (A,C,C,D,E)
|
|
|
|
|
fn check_against_naive(cl: &ClusterLayout) -> Result<bool,Error> {
|
|
|
|
|
let over_size = cl.partition_size +1;
|
|
|
|
|
let mut zone_token = HashMap::<String, usize>::new();
|
|
|
|
|
let nb_partitions = 1usize << PARTITION_BITS;
|
|
|
|
|
|
|
|
|
|
let zone_vec = node_zone.iter().unique().collect::<Vec<_>>();
|
|
|
|
|
let zone_nb_part = zone_vec
|
|
|
|
|
.iter()
|
|
|
|
|
.map(|z| {
|
|
|
|
|
cl.ring_assignation_data
|
|
|
|
|
.iter()
|
|
|
|
|
.filter(|x| node_zone[**x as usize] == **z)
|
|
|
|
|
.count()
|
|
|
|
|
})
|
|
|
|
|
.collect::<Vec<_>>();
|
|
|
|
|
let (zones, zone_to_id) = cl.generate_useful_zone_ids()?;
|
|
|
|
|
|
|
|
|
|
//Check optimality of the zone assignation : would it be better for the
|
|
|
|
|
//node_capacity/node_partitions ratio to change the assignation of a partition
|
|
|
|
|
if zones.is_empty() {
|
|
|
|
|
return Ok(false);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if let Some(idmin) = (0..nb_nodes).min_by(|i, j| {
|
|
|
|
|
(node_capacity[*i] * node_nb_part[*j] as u32)
|
|
|
|
|
.cmp(&(node_capacity[*j] * node_nb_part[*i] as u32))
|
|
|
|
|
}) {
|
|
|
|
|
if let Some(idnew) = (0..nb_nodes)
|
|
|
|
|
.filter(|i| {
|
|
|
|
|
if let Some(p) = zone_vec.iter().position(|z| **z == node_zone[*i]) {
|
|
|
|
|
zone_nb_part[p] < nb_partitions
|
|
|
|
|
} else {
|
|
|
|
|
false
|
|
|
|
|
}
|
|
|
|
|
})
|
|
|
|
|
.max_by(|i, j| {
|
|
|
|
|
(node_capacity[*i] * (node_nb_part[*j] as u32 + 1))
|
|
|
|
|
.cmp(&(node_capacity[*j] * (node_nb_part[*i] as u32 + 1)))
|
|
|
|
|
}) {
|
|
|
|
|
assert!(
|
|
|
|
|
node_capacity[idmin] * (node_nb_part[idnew] as u32 + 1)
|
|
|
|
|
>= node_capacity[idnew] * node_nb_part[idmin] as u32
|
|
|
|
|
);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
for z in zones.iter() {
|
|
|
|
|
zone_token.insert(z.clone(), 0);
|
|
|
|
|
}
|
|
|
|
|
for uuid in cl.useful_nodes().iter() {
|
|
|
|
|
let z = cl.get_node_zone(uuid)?;
|
|
|
|
|
let c = cl.get_node_capacity(uuid)?;
|
|
|
|
|
zone_token.insert(z.clone(), zone_token[&z] + min(nb_partitions , (c/over_size) as usize));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//In every zone, check optimality of the nod assignation
|
|
|
|
|
for z in zone_vec {
|
|
|
|
|
let node_of_z_iter = (0..nb_nodes).filter(|id| node_zone[*id] == *z);
|
|
|
|
|
if let Some(idmin) = node_of_z_iter.clone().min_by(|i, j| {
|
|
|
|
|
(node_capacity[*i] * node_nb_part[*j] as u32)
|
|
|
|
|
.cmp(&(node_capacity[*j] * node_nb_part[*i] as u32))
|
|
|
|
|
}) {
|
|
|
|
|
if let Some(idnew) = node_of_z_iter.min_by(|i, j| {
|
|
|
|
|
(node_capacity[*i] * (node_nb_part[*j] as u32 + 1))
|
|
|
|
|
.cmp(&(node_capacity[*j] * (node_nb_part[*i] as u32 + 1)))
|
|
|
|
|
}) {
|
|
|
|
|
assert!(
|
|
|
|
|
node_capacity[idmin] * (node_nb_part[idnew] as u32 + 1)
|
|
|
|
|
>= node_capacity[idnew] * node_nb_part[idmin] as u32
|
|
|
|
|
);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
*/
|
|
|
|
|
//For every partition, we count the number of zone already associated and
|
|
|
|
|
//the name of the last zone associated
|
|
|
|
|
|
|
|
|
|
let mut id_zone_token = vec![0; zones.len()];
|
|
|
|
|
for (z,t) in zone_token.iter() {
|
|
|
|
|
id_zone_token[zone_to_id[z]] = *t;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
let mut nb_token = vec![0; nb_partitions];
|
|
|
|
|
let mut last_zone = vec![zones.len(); nb_partitions];
|
|
|
|
|
|
|
|
|
|
let mut curr_zone = 0;
|
|
|
|
|
|
|
|
|
|
let redundancy = cl.parameters.zone_redundancy;
|
|
|
|
|
|
|
|
|
|
for replic in 0..cl.replication_factor {
|
|
|
|
|
for p in 0..nb_partitions {
|
|
|
|
|
while id_zone_token[curr_zone] == 0 ||
|
|
|
|
|
(last_zone[p] == curr_zone
|
|
|
|
|
&& redundancy - nb_token[p] <= cl.replication_factor - replic) {
|
|
|
|
|
curr_zone += 1;
|
|
|
|
|
if curr_zone >= zones.len() {
|
|
|
|
|
return Ok(true);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
id_zone_token[curr_zone] -= 1;
|
|
|
|
|
if last_zone[p] != curr_zone {
|
|
|
|
|
nb_token[p] += 1;
|
|
|
|
|
last_zone[p] = curr_zone;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return Ok(false);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn show_msg(msg : &Message) {
|
|
|
|
|
for s in msg.iter(){
|
|
|
|
@ -901,6 +884,7 @@ mod tests {
|
|
|
|
|
node_id_vec: &Vec<u8>,
|
|
|
|
|
node_capacity_vec: &Vec<u32>,
|
|
|
|
|
node_zone_vec: &Vec<String>,
|
|
|
|
|
zone_redundancy: usize
|
|
|
|
|
) {
|
|
|
|
|
for i in 0..node_id_vec.len() {
|
|
|
|
|
if let Some(x) = FixedBytes32::try_from(&[i as u8; 32]) {
|
|
|
|
@ -917,11 +901,11 @@ mod tests {
|
|
|
|
|
);
|
|
|
|
|
cl.roles.merge(&update);
|
|
|
|
|
}
|
|
|
|
|
cl.staged_parameters = Lww::<LayoutParameters>::new(LayoutParameters{zone_redundancy});
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_assignation() {
|
|
|
|
|
std::io::stdout().flush().ok().expect("Could not flush stdout");
|
|
|
|
|
let mut node_id_vec = vec![1, 2, 3];
|
|
|
|
|
let mut node_capacity_vec = vec![4000, 1000, 2000];
|
|
|
|
|
let mut node_zone_vec = vec!["A", "B", "C"]
|
|
|
|
@ -929,22 +913,11 @@ mod tests {
|
|
|
|
|
.map(|x| x.to_string())
|
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
|
|
let mut cl = ClusterLayout {
|
|
|
|
|
node_id_vec: vec![],
|
|
|
|
|
|
|
|
|
|
roles: LwwMap::new(),
|
|
|
|
|
|
|
|
|
|
replication_factor: 3,
|
|
|
|
|
zone_redundancy: 1,
|
|
|
|
|
partition_size: 0,
|
|
|
|
|
ring_assignation_data: vec![],
|
|
|
|
|
version: 0,
|
|
|
|
|
staging: LwwMap::new(),
|
|
|
|
|
staging_hash: blake2sum(&rmp_to_vec_all_named(&LwwMap::<Uuid, NodeRoleV>::new()).unwrap()[..]),
|
|
|
|
|
};
|
|
|
|
|
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
|
|
|
|
|
show_msg(&cl.calculate_partition_assignation(3,3).unwrap());
|
|
|
|
|
let mut cl = ClusterLayout::new(3);
|
|
|
|
|
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec, 3);
|
|
|
|
|
show_msg(&cl.calculate_partition_assignation().unwrap());
|
|
|
|
|
assert!(cl.check());
|
|
|
|
|
assert!(matches!(check_against_naive(&cl), Ok(true)));
|
|
|
|
|
|
|
|
|
|
node_id_vec = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
|
|
|
|
|
node_capacity_vec = vec![4000, 1000, 1000, 3000, 1000, 1000, 2000, 10000, 2000];
|
|
|
|
@ -952,19 +925,22 @@ mod tests {
|
|
|
|
|
.into_iter()
|
|
|
|
|
.map(|x| x.to_string())
|
|
|
|
|
.collect();
|
|
|
|
|
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
|
|
|
|
|
show_msg(&cl.calculate_partition_assignation(3,3).unwrap());
|
|
|
|
|
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec, 2);
|
|
|
|
|
show_msg(&cl.calculate_partition_assignation().unwrap());
|
|
|
|
|
assert!(cl.check());
|
|
|
|
|
assert!(matches!(check_against_naive(&cl), Ok(true)));
|
|
|
|
|
|
|
|
|
|
node_capacity_vec = vec![4000, 1000, 2000, 7000, 1000, 1000, 2000, 10000, 2000];
|
|
|
|
|
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
|
|
|
|
|
show_msg(&cl.calculate_partition_assignation(3,3).unwrap());
|
|
|
|
|
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec, 3);
|
|
|
|
|
show_msg(&cl.calculate_partition_assignation().unwrap());
|
|
|
|
|
assert!(cl.check());
|
|
|
|
|
assert!(matches!(check_against_naive(&cl), Ok(true)));
|
|
|
|
|
|
|
|
|
|
node_capacity_vec = vec![4000000, 4000000, 2000000, 7000000, 1000000, 9000000, 2000000, 10000, 2000000];
|
|
|
|
|
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
|
|
|
|
|
show_msg(&cl.calculate_partition_assignation(3,1).unwrap());
|
|
|
|
|
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec, 1);
|
|
|
|
|
show_msg(&cl.calculate_partition_assignation().unwrap());
|
|
|
|
|
assert!(cl.check());
|
|
|
|
|
assert!(matches!(check_against_naive(&cl), Ok(true)));
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|