garage/src/table/merkle.rs

475 lines
12 KiB
Rust

use std::sync::Arc;
use std::time::Duration;
use async_trait::async_trait;
use serde::{Deserialize, Serialize};
use tokio::select;
use tokio::sync::watch;
use garage_db as db;
use garage_util::background::*;
use garage_util::data::*;
use garage_util::encode::{nonversioned_decode, nonversioned_encode};
use garage_util::error::Error;
use garage_rpc::ring::*;
use crate::data::*;
use crate::replication::*;
use crate::schema::*;
// This modules partitions the data in 2**16 partitions, based on the top
// 16 bits (two bytes) of item's partition keys' hashes.
// It builds one Merkle tree for each of these 2**16 partitions.
pub struct MerkleUpdater<F: TableSchema, R: TableReplication> {
data: Arc<TableData<F, R>>,
// Content of the todo tree: items where
// - key = the key of an item in the main table, ie hash(partition_key)+sort_key
// - value = the hash of the full serialized item, if present,
// or an empty vec if item is absent (deleted)
// Fields in data:
// pub(crate) merkle_todo: sled::Tree,
// pub(crate) merkle_todo_notify: Notify,
// Content of the merkle tree: items where
// - key = .bytes() for MerkleNodeKey
// - value = serialization of a MerkleNode, assumed to be MerkleNode::empty if not found
// Field in data:
// pub(crate) merkle_tree: sled::Tree,
empty_node_hash: Hash,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct MerkleNodeKey {
// partition number
pub partition: Partition,
// prefix: a prefix for the hash of full keys, i.e. hash(hash(partition_key)+sort_key)
#[serde(with = "serde_bytes")]
pub prefix: Vec<u8>,
}
#[derive(PartialEq, Eq, Debug, Serialize, Deserialize)]
pub enum MerkleNode {
// The empty Merkle node
Empty,
// An intermediate Merkle tree node for a prefix
// Contains the hashes of the 256 possible next prefixes
Intermediate(Vec<(u8, Hash)>),
// A final node for an item
// Contains the full key of the item and the hash of the value
Leaf(Vec<u8>, Hash),
}
impl<F: TableSchema, R: TableReplication> MerkleUpdater<F, R> {
pub(crate) fn new(data: Arc<TableData<F, R>>) -> Arc<Self> {
let empty_node_hash = blake2sum(&nonversioned_encode(&MerkleNode::Empty).unwrap()[..]);
Arc::new(Self {
data,
empty_node_hash,
})
}
pub(crate) fn spawn_workers(self: &Arc<Self>, background: &BackgroundRunner) {
background.spawn_worker(MerkleWorker(self.clone()));
}
fn updater_loop_iter(&self) -> Result<WorkerState, Error> {
if let Some((key, valhash)) = self.data.merkle_todo.first()? {
self.update_item(&key, &valhash)?;
Ok(WorkerState::Busy)
} else {
Ok(WorkerState::Idle)
}
}
fn update_item(&self, k: &[u8], vhash_by: &[u8]) -> Result<(), Error> {
let khash = blake2sum(k);
let new_vhash = if vhash_by.is_empty() {
None
} else {
Some(Hash::try_from(vhash_by).unwrap())
};
let key = MerkleNodeKey {
partition: self
.data
.replication
.partition_of(&Hash::try_from(&k[0..32]).unwrap()),
prefix: vec![],
};
self.data
.merkle_tree
.db()
.transaction(|tx| self.update_item_rec(tx, k, &khash, &key, new_vhash))?;
let deleted = self.data.merkle_todo.db().transaction(|tx| {
let remove = matches!(tx.get(&self.data.merkle_todo, k)?, Some(ov) if ov == vhash_by);
if remove {
tx.remove(&self.data.merkle_todo, k)?;
}
Ok(remove)
})?;
if !deleted {
debug!(
"({}) Item not deleted from Merkle todo because it changed: {:?}",
F::TABLE_NAME,
k
);
}
Ok(())
}
fn update_item_rec(
&self,
tx: &mut db::Transaction<'_>,
k: &[u8],
khash: &Hash,
key: &MerkleNodeKey,
new_vhash: Option<Hash>,
) -> db::TxResult<Option<Hash>, Error> {
let i = key.prefix.len();
// Read node at current position (defined by the prefix stored in key)
// Calculate an update to apply to this node
// This update is an Option<_>, so that it is None if the update is a no-op
// and we can thus skip recalculating and re-storing everything
let mutate = match self.read_node_txn(tx, key)? {
MerkleNode::Empty => new_vhash.map(|vhv| MerkleNode::Leaf(k.to_vec(), vhv)),
MerkleNode::Intermediate(mut children) => {
let key2 = key.next_key(khash);
if let Some(subhash) = self.update_item_rec(tx, k, khash, &key2, new_vhash)? {
// Subtree changed, update this node as well
if subhash == self.empty_node_hash {
intermediate_rm_child(&mut children, key2.prefix[i]);
} else {
intermediate_set_child(&mut children, key2.prefix[i], subhash);
}
if children.is_empty() {
// should not happen
warn!(
"({}) Replacing intermediate node with empty node, should not happen.",
F::TABLE_NAME
);
Some(MerkleNode::Empty)
} else if children.len() == 1 {
// We now have a single node (case when the update deleted one of only two
// children). If that node is a leaf, move it to this level.
let key_sub = key.add_byte(children[0].0);
let subnode = self.read_node_txn(tx, &key_sub)?;
match subnode {
MerkleNode::Empty => {
warn!(
"({}) Single subnode in tree is empty Merkle node",
F::TABLE_NAME
);
Some(MerkleNode::Empty)
}
MerkleNode::Intermediate(_) => Some(MerkleNode::Intermediate(children)),
x @ MerkleNode::Leaf(_, _) => {
tx.remove(&self.data.merkle_tree, key_sub.encode())?;
Some(x)
}
}
} else {
Some(MerkleNode::Intermediate(children))
}
} else {
// Subtree not changed, nothing to do
None
}
}
MerkleNode::Leaf(exlf_k, exlf_vhash) => {
if exlf_k == k {
// This leaf is for the same key that the one we are updating
match new_vhash {
Some(vhv) if vhv == exlf_vhash => None,
Some(vhv) => Some(MerkleNode::Leaf(k.to_vec(), vhv)),
None => Some(MerkleNode::Empty),
}
} else {
// This is an only leaf for another key
if new_vhash.is_some() {
// Move that other key to a subnode, create another subnode for our
// insertion and replace current node by an intermediary node
let mut int = vec![];
let exlf_khash = blake2sum(&exlf_k[..]);
assert_eq!(khash.as_slice()[..i], exlf_khash.as_slice()[..i]);
{
let exlf_subkey = key.next_key(&exlf_khash);
let exlf_sub_hash = self
.update_item_rec(
tx,
&exlf_k[..],
&exlf_khash,
&exlf_subkey,
Some(exlf_vhash),
)?
.unwrap();
intermediate_set_child(&mut int, exlf_subkey.prefix[i], exlf_sub_hash);
assert_eq!(int.len(), 1);
}
{
let key2 = key.next_key(khash);
let subhash = self
.update_item_rec(tx, k, khash, &key2, new_vhash)?
.unwrap();
intermediate_set_child(&mut int, key2.prefix[i], subhash);
if exlf_khash.as_slice()[i] == khash.as_slice()[i] {
assert_eq!(int.len(), 1);
} else {
assert_eq!(int.len(), 2);
}
}
Some(MerkleNode::Intermediate(int))
} else {
// Nothing to do, we don't want to insert this value because it is None,
// and we don't want to change the other value because it's for something
// else
None
}
}
}
};
if let Some(new_node) = mutate {
let hash = self.put_node_txn(tx, key, &new_node)?;
Ok(Some(hash))
} else {
Ok(None)
}
}
// Merkle tree node manipulation
fn read_node_txn(
&self,
tx: &mut db::Transaction<'_>,
k: &MerkleNodeKey,
) -> db::TxResult<MerkleNode, Error> {
let ent = tx.get(&self.data.merkle_tree, k.encode())?;
MerkleNode::decode_opt(&ent).map_err(db::TxError::Abort)
}
fn put_node_txn(
&self,
tx: &mut db::Transaction<'_>,
k: &MerkleNodeKey,
v: &MerkleNode,
) -> db::TxResult<Hash, Error> {
trace!("Put Merkle node: {:?} => {:?}", k, v);
if *v == MerkleNode::Empty {
tx.remove(&self.data.merkle_tree, k.encode())?;
Ok(self.empty_node_hash)
} else {
let vby = nonversioned_encode(v).map_err(|e| db::TxError::Abort(e.into()))?;
let rethash = blake2sum(&vby[..]);
tx.insert(&self.data.merkle_tree, k.encode(), vby)?;
Ok(rethash)
}
}
// Access a node in the Merkle tree, used by the sync protocol
pub(crate) fn read_node(&self, k: &MerkleNodeKey) -> Result<MerkleNode, Error> {
let ent = self.data.merkle_tree.get(k.encode())?;
MerkleNode::decode_opt(&ent)
}
pub fn merkle_tree_len(&self) -> Result<usize, Error> {
Ok(self.data.merkle_tree.len()?)
}
pub fn merkle_tree_fast_len(&self) -> Result<Option<usize>, Error> {
Ok(self.data.merkle_tree.fast_len()?)
}
pub fn todo_len(&self) -> Result<usize, Error> {
Ok(self.data.merkle_todo.len()?)
}
}
struct MerkleWorker<F: TableSchema, R: TableReplication>(Arc<MerkleUpdater<F, R>>);
#[async_trait]
impl<F: TableSchema, R: TableReplication> Worker for MerkleWorker<F, R> {
fn name(&self) -> String {
format!("{} Merkle", F::TABLE_NAME)
}
fn status(&self) -> WorkerStatus {
WorkerStatus {
queue_length: Some(self.0.todo_len().unwrap_or(0) as u64),
..Default::default()
}
}
async fn work(&mut self, _must_exit: &mut watch::Receiver<bool>) -> Result<WorkerState, Error> {
let updater = self.0.clone();
tokio::task::spawn_blocking(move || {
for _i in 0..100 {
let s = updater.updater_loop_iter();
if !matches!(s, Ok(WorkerState::Busy)) {
return s;
}
}
Ok(WorkerState::Busy)
})
.await
.unwrap()
}
async fn wait_for_work(&mut self) -> WorkerState {
select! {
_ = tokio::time::sleep(Duration::from_secs(60)) => (),
_ = self.0.data.merkle_todo_notify.notified() => (),
}
WorkerState::Busy
}
}
impl MerkleNodeKey {
fn encode(&self) -> Vec<u8> {
let mut ret = Vec::with_capacity(2 + self.prefix.len());
ret.extend(&u16::to_be_bytes(self.partition)[..]);
ret.extend(&self.prefix[..]);
ret
}
pub fn next_key(&self, h: &Hash) -> Self {
assert_eq!(h.as_slice()[0..self.prefix.len()], self.prefix[..]);
let mut s2 = self.clone();
s2.prefix.push(h.as_slice()[self.prefix.len()]);
s2
}
pub fn add_byte(&self, b: u8) -> Self {
let mut s2 = self.clone();
s2.prefix.push(b);
s2
}
}
impl MerkleNode {
fn decode_opt(ent: &Option<db::Value>) -> Result<Self, Error> {
match ent {
None => Ok(MerkleNode::Empty),
Some(v) => Ok(nonversioned_decode::<MerkleNode>(&v[..])?),
}
}
pub fn is_empty(&self) -> bool {
*self == MerkleNode::Empty
}
}
fn intermediate_set_child(ch: &mut Vec<(u8, Hash)>, pos: u8, v: Hash) {
for i in 0..ch.len() {
if ch[i].0 == pos {
ch[i].1 = v;
return;
} else if ch[i].0 > pos {
ch.insert(i, (pos, v));
return;
}
}
ch.push((pos, v));
}
fn intermediate_rm_child(ch: &mut Vec<(u8, Hash)>, pos: u8) {
for i in 0..ch.len() {
if ch[i].0 == pos {
ch.remove(i);
return;
}
}
}
#[test]
fn test_intermediate_aux() {
let mut v = vec![];
intermediate_set_child(&mut v, 12u8, [12u8; 32].into());
assert_eq!(v, vec![(12u8, [12u8; 32].into())]);
intermediate_set_child(&mut v, 42u8, [42u8; 32].into());
assert_eq!(
v,
vec![(12u8, [12u8; 32].into()), (42u8, [42u8; 32].into())]
);
intermediate_set_child(&mut v, 4u8, [4u8; 32].into());
assert_eq!(
v,
vec![
(4u8, [4u8; 32].into()),
(12u8, [12u8; 32].into()),
(42u8, [42u8; 32].into())
]
);
intermediate_set_child(&mut v, 12u8, [8u8; 32].into());
assert_eq!(
v,
vec![
(4u8, [4u8; 32].into()),
(12u8, [8u8; 32].into()),
(42u8, [42u8; 32].into())
]
);
intermediate_set_child(&mut v, 6u8, [6u8; 32].into());
assert_eq!(
v,
vec![
(4u8, [4u8; 32].into()),
(6u8, [6u8; 32].into()),
(12u8, [8u8; 32].into()),
(42u8, [42u8; 32].into())
]
);
intermediate_rm_child(&mut v, 42u8);
assert_eq!(
v,
vec![
(4u8, [4u8; 32].into()),
(6u8, [6u8; 32].into()),
(12u8, [8u8; 32].into())
]
);
intermediate_rm_child(&mut v, 11u8);
assert_eq!(
v,
vec![
(4u8, [4u8; 32].into()),
(6u8, [6u8; 32].into()),
(12u8, [8u8; 32].into())
]
);
intermediate_rm_child(&mut v, 6u8);
assert_eq!(v, vec![(4u8, [4u8; 32].into()), (12u8, [8u8; 32].into())]);
intermediate_set_child(&mut v, 6u8, [7u8; 32].into());
assert_eq!(
v,
vec![
(4u8, [4u8; 32].into()),
(6u8, [7u8; 32].into()),
(12u8, [8u8; 32].into())
]
);
}