garage/src/rpc/layout.rs

670 lines
20 KiB
Rust

use std::cmp::min;
use std::cmp::Ordering;
use std::collections::HashMap;
use serde::{Deserialize, Serialize};
use garage_util::bipartite::*;
use garage_util::crdt::{AutoCrdt, Crdt, LwwMap};
use garage_util::data::*;
use rand::prelude::SliceRandom;
use crate::ring::*;
/// The layout of the cluster, i.e. the list of roles
/// which are assigned to each cluster node
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct ClusterLayout {
pub version: u64,
pub replication_factor: usize,
pub roles: LwwMap<Uuid, NodeRoleV>,
/// node_id_vec: a vector of node IDs with a role assigned
/// in the system (this includes gateway nodes).
/// The order here is different than the vec stored by `roles`, because:
/// 1. non-gateway nodes are first so that they have lower numbers
/// 2. nodes that don't have a role are excluded (but they need to
/// stay in the CRDT as tombstones)
pub node_id_vec: Vec<Uuid>,
/// the assignation of data partitions to node, the values
/// are indices in node_id_vec
#[serde(with = "serde_bytes")]
pub ring_assignation_data: Vec<CompactNodeType>,
/// Role changes which are staged for the next version of the layout
pub staging: LwwMap<Uuid, NodeRoleV>,
pub staging_hash: Hash,
}
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug, Serialize, Deserialize)]
pub struct NodeRoleV(pub Option<NodeRole>);
impl AutoCrdt for NodeRoleV {
const WARN_IF_DIFFERENT: bool = true;
}
/// The user-assigned roles of cluster nodes
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug, Serialize, Deserialize)]
pub struct NodeRole {
/// Datacenter at which this entry belong. This information might be used to perform a better
/// geodistribution
pub zone: String,
/// The (relative) capacity of the node
/// If this is set to None, the node does not participate in storing data for the system
/// and is only active as an API gateway to other nodes
pub capacity: Option<u32>,
/// A set of tags to recognize the node
pub tags: Vec<String>,
}
impl NodeRole {
pub fn capacity_string(&self) -> String {
match self.capacity {
Some(c) => format!("{}", c),
None => "gateway".to_string(),
}
}
}
impl ClusterLayout {
pub fn new(replication_factor: usize) -> Self {
let empty_lwwmap = LwwMap::new();
let empty_lwwmap_hash = blake2sum(&rmp_to_vec_all_named(&empty_lwwmap).unwrap()[..]);
ClusterLayout {
version: 0,
replication_factor,
roles: LwwMap::new(),
node_id_vec: Vec::new(),
ring_assignation_data: Vec::new(),
staging: empty_lwwmap,
staging_hash: empty_lwwmap_hash,
}
}
pub fn merge(&mut self, other: &ClusterLayout) -> bool {
match other.version.cmp(&self.version) {
Ordering::Greater => {
*self = other.clone();
true
}
Ordering::Equal => {
self.staging.merge(&other.staging);
let new_staging_hash = blake2sum(&rmp_to_vec_all_named(&self.staging).unwrap()[..]);
let changed = new_staging_hash != self.staging_hash;
self.staging_hash = new_staging_hash;
changed
}
Ordering::Less => false,
}
}
/// Returns a list of IDs of nodes that currently have
/// a role in the cluster
pub fn node_ids(&self) -> &[Uuid] {
&self.node_id_vec[..]
}
pub fn num_nodes(&self) -> usize {
self.node_id_vec.len()
}
/// Returns the role of a node in the layout
pub fn node_role(&self, node: &Uuid) -> Option<&NodeRole> {
match self.roles.get(node) {
Some(NodeRoleV(Some(v))) => Some(v),
_ => None,
}
}
/// Check a cluster layout for internal consistency
/// returns true if consistent, false if error
pub fn check(&self) -> bool {
// Check that the hash of the staging data is correct
let staging_hash = blake2sum(&rmp_to_vec_all_named(&self.staging).unwrap()[..]);
if staging_hash != self.staging_hash {
return false;
}
// Check that node_id_vec contains the correct list of nodes
let mut expected_nodes = self
.roles
.items()
.iter()
.filter(|(_, _, v)| v.0.is_some())
.map(|(id, _, _)| *id)
.collect::<Vec<_>>();
expected_nodes.sort();
let mut node_id_vec = self.node_id_vec.clone();
node_id_vec.sort();
if expected_nodes != node_id_vec {
return false;
}
// Check that the assignation data has the correct length
if self.ring_assignation_data.len() != (1 << PARTITION_BITS) * self.replication_factor {
return false;
}
// Check that the assigned nodes are correct identifiers
// of nodes that are assigned a role
// and that role is not the role of a gateway nodes
for x in self.ring_assignation_data.iter() {
if *x as usize >= self.node_id_vec.len() {
return false;
}
let node = self.node_id_vec[*x as usize];
match self.roles.get(&node) {
Some(NodeRoleV(Some(x))) if x.capacity.is_some() => (),
_ => return false,
}
}
true
}
/// This function calculates a new partition-to-node assignation.
/// The computed assignation maximizes the capacity of a
/// partition (assuming all partitions have the same size).
/// Among such optimal assignation, it minimizes the distance to
/// the former assignation (if any) to minimize the amount of
/// data to be moved. A heuristic ensures node triplets
/// dispersion (in garage_util::bipartite::optimize_matching()).
pub fn calculate_partition_assignation(&mut self) -> bool {
//The nodes might have been updated, some might have been deleted.
//So we need to first update the list of nodes and retrieve the
//assignation.
let old_node_assignation = self.update_nodes_and_ring();
let (node_zone, _) = self.get_node_zone_capacity();
//We compute the optimal number of partition to assign to
//every node and zone.
if let Some((part_per_nod, part_per_zone)) = self.optimal_proportions() {
//We collect part_per_zone in a vec to not rely on the
//arbitrary order in which elements are iterated in
//Hashmap::iter()
let part_per_zone_vec = part_per_zone
.iter()
.map(|(x, y)| (x.clone(), *y))
.collect::<Vec<(String, usize)>>();
//We create an indexing of the zones
let mut zone_id = HashMap::<String, usize>::new();
for (i, ppz) in part_per_zone_vec.iter().enumerate() {
zone_id.insert(ppz.0.clone(), i);
}
//We compute a candidate for the new partition to zone
//assignation.
let nb_zones = part_per_zone.len();
let nb_nodes = part_per_nod.len();
let nb_partitions = 1 << PARTITION_BITS;
let left_cap_vec = vec![self.replication_factor as u32; nb_partitions];
let right_cap_vec = part_per_zone_vec.iter().map(|(_, y)| *y as u32).collect();
let mut zone_assignation = dinic_compute_matching(left_cap_vec, right_cap_vec);
//We create the structure for the partition-to-node assignation.
let mut node_assignation = vec![vec![None; self.replication_factor]; nb_partitions];
//We will decrement part_per_nod to keep track of the number
//of partitions that we still have to associate.
let mut part_per_nod = part_per_nod;
//We minimize the distance to the former assignation(if any)
//We get the id of the zones of the former assignation
//(and the id no_zone if there is no node assignated)
let no_zone = part_per_zone_vec.len();
let old_zone_assignation: Vec<Vec<usize>> = old_node_assignation
.iter()
.map(|x| {
x.iter()
.map(|id| match *id {
Some(i) => zone_id[&node_zone[i]],
None => no_zone,
})
.collect()
})
.collect();
//We minimize the distance to the former zone assignation
zone_assignation =
optimize_matching(&old_zone_assignation, &zone_assignation, nb_zones + 1); //+1 for no_zone
//We need to assign partitions to nodes in their zone
//We first put the nodes assignation that can stay the same
for i in 0..nb_partitions {
for j in 0..self.replication_factor {
if let Some(Some(former_node)) = old_node_assignation[i].iter().find(|x| {
if let Some(id) = x {
zone_id[&node_zone[*id]] == zone_assignation[i][j]
} else {
false
}
}) {
if part_per_nod[*former_node] > 0 {
node_assignation[i][j] = Some(*former_node);
part_per_nod[*former_node] -= 1;
}
}
}
}
//We complete the assignation of partitions to nodes
let mut rng = rand::thread_rng();
for i in 0..nb_partitions {
for j in 0..self.replication_factor {
if node_assignation[i][j] == None {
let possible_nodes: Vec<usize> = (0..nb_nodes)
.filter(|id| {
zone_id[&node_zone[*id]] == zone_assignation[i][j]
&& part_per_nod[*id] > 0
})
.collect();
assert!(!possible_nodes.is_empty());
//We randomly pick a node
if let Some(nod) = possible_nodes.choose(&mut rng) {
node_assignation[i][j] = Some(*nod);
part_per_nod[*nod] -= 1;
}
}
}
}
//We write the assignation in the 1D table
self.ring_assignation_data = Vec::<CompactNodeType>::new();
for ass in node_assignation {
for nod in ass {
if let Some(id) = nod {
self.ring_assignation_data.push(id as CompactNodeType);
} else {
panic!()
}
}
}
true
} else {
false
}
}
/// The LwwMap of node roles might have changed. This function updates the node_id_vec
/// and returns the assignation given by ring, with the new indices of the nodes, and
/// None of the node is not present anymore.
/// We work with the assumption that only this function and calculate_new_assignation
/// do modify assignation_ring and node_id_vec.
fn update_nodes_and_ring(&mut self) -> Vec<Vec<Option<usize>>> {
let nb_partitions = 1usize << PARTITION_BITS;
let mut node_assignation = vec![vec![None; self.replication_factor]; nb_partitions];
let rf = self.replication_factor;
let ring = &self.ring_assignation_data;
let new_node_id_vec: Vec<Uuid> = self.roles.items().iter().map(|(k, _, _)| *k).collect();
if ring.len() == rf * nb_partitions {
for i in 0..nb_partitions {
for j in 0..self.replication_factor {
node_assignation[i][j] = new_node_id_vec
.iter()
.position(|id| *id == self.node_id_vec[ring[i * rf + j] as usize]);
}
}
}
self.node_id_vec = new_node_id_vec;
self.ring_assignation_data = vec![];
node_assignation
}
///This function compute the number of partition to assign to
///every node and zone, so that every partition is replicated
///self.replication_factor times and the capacity of a partition
///is maximized.
fn optimal_proportions(&mut self) -> Option<(Vec<usize>, HashMap<String, usize>)> {
let mut zone_capacity: HashMap<String, u32> = HashMap::new();
let (node_zone, node_capacity) = self.get_node_zone_capacity();
let nb_nodes = self.node_id_vec.len();
for i in 0..nb_nodes {
if zone_capacity.contains_key(&node_zone[i]) {
zone_capacity.insert(
node_zone[i].clone(),
zone_capacity[&node_zone[i]] + node_capacity[i],
);
} else {
zone_capacity.insert(node_zone[i].clone(), node_capacity[i]);
}
}
//Compute the optimal number of partitions per zone
let sum_capacities: u32 = zone_capacity.values().sum();
if sum_capacities == 0 {
println!("No storage capacity in the network.");
return None;
}
let nb_partitions = 1 << PARTITION_BITS;
//Initially we would like to use zones porportionally to
//their capacity.
//However, a large zone can be associated to at most
//nb_partitions to ensure replication of the date.
//So we take the min with nb_partitions:
let mut part_per_zone: HashMap<String, usize> = zone_capacity
.iter()
.map(|(k, v)| {
(
k.clone(),
min(
nb_partitions,
(self.replication_factor * nb_partitions * *v as usize)
/ sum_capacities as usize,
),
)
})
.collect();
//The replication_factor-1 upper bounds the number of
//part_per_zones that are greater than nb_partitions
for _ in 1..self.replication_factor {
//The number of partitions that are not assignated to
//a zone that takes nb_partitions.
let sum_capleft: u32 = zone_capacity
.keys()
.filter(|k| part_per_zone[*k] < nb_partitions)
.map(|k| zone_capacity[k])
.sum();
//The number of replication of the data that we need
//to ensure.
let repl_left = self.replication_factor
- part_per_zone
.values()
.filter(|x| **x == nb_partitions)
.count();
if repl_left == 0 {
break;
}
for k in zone_capacity.keys() {
if part_per_zone[k] != nb_partitions {
part_per_zone.insert(
k.to_string(),
min(
nb_partitions,
(nb_partitions * zone_capacity[k] as usize * repl_left)
/ sum_capleft as usize,
),
);
}
}
}
//Now we divide the zone's partition share proportionally
//between their nodes.
let mut part_per_nod: Vec<usize> = (0..nb_nodes)
.map(|i| {
(part_per_zone[&node_zone[i]] * node_capacity[i] as usize)
/ zone_capacity[&node_zone[i]] as usize
})
.collect();
//We must update the part_per_zone to make it correspond to
//part_per_nod (because of integer rounding)
part_per_zone = part_per_zone.iter().map(|(k, _)| (k.clone(), 0)).collect();
for i in 0..nb_nodes {
part_per_zone.insert(
node_zone[i].clone(),
part_per_zone[&node_zone[i]] + part_per_nod[i],
);
}
//Because of integer rounding, the total sum of part_per_nod
//might not be replication_factor*nb_partitions.
// We need at most to add 1 to every non maximal value of
// part_per_nod. The capacity of a partition will be bounded
// by the minimal value of
// node_capacity_vec[i]/part_per_nod[i]
// so we try to maximize this minimal value, keeping the
// part_per_zone capped
let discrepancy: usize =
nb_partitions * self.replication_factor - part_per_nod.iter().sum::<usize>();
//We use a stupid O(N^2) algorithm. If the number of nodes
//is actually expected to be high, one should optimize this.
for _ in 0..discrepancy {
if let Some(idmax) = (0..nb_nodes)
.filter(|i| part_per_zone[&node_zone[*i]] < nb_partitions)
.max_by(|i, j| {
(node_capacity[*i] * (part_per_nod[*j] + 1) as u32)
.cmp(&(node_capacity[*j] * (part_per_nod[*i] + 1) as u32))
}) {
part_per_nod[idmax] += 1;
part_per_zone.insert(
node_zone[idmax].clone(),
part_per_zone[&node_zone[idmax]] + 1,
);
}
}
//We check the algorithm consistency
let discrepancy: usize =
nb_partitions * self.replication_factor - part_per_nod.iter().sum::<usize>();
assert!(discrepancy == 0);
assert!(if let Some(v) = part_per_zone.values().max() {
*v <= nb_partitions
} else {
false
});
Some((part_per_nod, part_per_zone))
}
//Returns vectors of zone and capacity; indexed by the same (temporary)
//indices as node_id_vec.
fn get_node_zone_capacity(&self) -> (Vec<String>, Vec<u32>) {
let node_zone = self
.node_id_vec
.iter()
.map(|id_nod| match self.node_role(id_nod) {
Some(NodeRole {
zone,
capacity: _,
tags: _,
}) => zone.clone(),
_ => "".to_string(),
})
.collect();
let node_capacity = self
.node_id_vec
.iter()
.map(|id_nod| match self.node_role(id_nod) {
Some(NodeRole {
zone: _,
capacity: Some(c),
tags: _,
}) => {
*c
}
_ => 0,
})
.collect();
(node_zone, node_capacity)
}
}
#[cfg(test)]
mod tests {
use super::*;
use itertools::Itertools;
fn check_assignation(cl: &ClusterLayout) {
//Check that input data has the right format
let nb_partitions = 1usize << PARTITION_BITS;
assert!([1, 2, 3].contains(&cl.replication_factor));
assert!(cl.ring_assignation_data.len() == nb_partitions * cl.replication_factor);
let (node_zone, node_capacity) = cl.get_node_zone_capacity();
//Check that is is a correct assignation with zone redundancy
let rf = cl.replication_factor;
for i in 0..nb_partitions {
assert!(
rf == cl.ring_assignation_data[rf * i..rf * (i + 1)]
.iter()
.map(|nod| node_zone[*nod as usize].clone())
.unique()
.count()
);
}
let nb_nodes = cl.node_id_vec.len();
//Check optimality
let node_nb_part = (0..nb_nodes)
.map(|i| {
cl.ring_assignation_data
.iter()
.filter(|x| **x == i as u8)
.count()
})
.collect::<Vec<_>>();
let zone_vec = node_zone.iter().unique().collect::<Vec<_>>();
let zone_nb_part = zone_vec
.iter()
.map(|z| {
cl.ring_assignation_data
.iter()
.filter(|x| node_zone[**x as usize] == **z)
.count()
})
.collect::<Vec<_>>();
//Check optimality of the zone assignation : would it be better for the
//node_capacity/node_partitions ratio to change the assignation of a partition
if let Some(idmin) = (0..nb_nodes).min_by(|i, j| {
(node_capacity[*i] * node_nb_part[*j] as u32)
.cmp(&(node_capacity[*j] * node_nb_part[*i] as u32))
}) {
if let Some(idnew) = (0..nb_nodes)
.filter(|i| {
if let Some(p) = zone_vec.iter().position(|z| **z == node_zone[*i]) {
zone_nb_part[p] < nb_partitions
} else {
false
}
})
.max_by(|i, j| {
(node_capacity[*i] * (node_nb_part[*j] as u32 + 1))
.cmp(&(node_capacity[*j] * (node_nb_part[*i] as u32 + 1)))
}) {
assert!(
node_capacity[idmin] * (node_nb_part[idnew] as u32 + 1)
>= node_capacity[idnew] * node_nb_part[idmin] as u32
);
}
}
//In every zone, check optimality of the nod assignation
for z in zone_vec {
let node_of_z_iter = (0..nb_nodes).filter(|id| node_zone[*id] == *z);
if let Some(idmin) = node_of_z_iter.clone().min_by(|i, j| {
(node_capacity[*i] * node_nb_part[*j] as u32)
.cmp(&(node_capacity[*j] * node_nb_part[*i] as u32))
}) {
if let Some(idnew) = node_of_z_iter.min_by(|i, j| {
(node_capacity[*i] * (node_nb_part[*j] as u32 + 1))
.cmp(&(node_capacity[*j] * (node_nb_part[*i] as u32 + 1)))
}) {
assert!(
node_capacity[idmin] * (node_nb_part[idnew] as u32 + 1)
>= node_capacity[idnew] * node_nb_part[idmin] as u32
);
}
}
}
}
fn update_layout(
cl: &mut ClusterLayout,
node_id_vec: &Vec<u8>,
node_capacity_vec: &Vec<u32>,
node_zone_vec: &Vec<String>,
) {
for i in 0..node_id_vec.len() {
if let Some(x) = FixedBytes32::try_from(&[i as u8; 32]) {
cl.node_id_vec.push(x);
}
let update = cl.roles.update_mutator(
cl.node_id_vec[i],
NodeRoleV(Some(NodeRole {
zone: (node_zone_vec[i].to_string()),
capacity: (Some(node_capacity_vec[i])),
tags: (vec![]),
})),
);
cl.roles.merge(&update);
}
}
#[test]
fn test_assignation() {
let mut node_id_vec = vec![1, 2, 3];
let mut node_capacity_vec = vec![4000, 1000, 2000];
let mut node_zone_vec = vec!["A", "B", "C"]
.into_iter()
.map(|x| x.to_string())
.collect();
let mut cl = ClusterLayout {
node_id_vec: vec![],
roles: LwwMap::new(),
replication_factor: 3,
ring_assignation_data: vec![],
version: 0,
staging: LwwMap::new(),
staging_hash: sha256sum(&[1; 32]),
};
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
cl.calculate_partition_assignation();
check_assignation(&cl);
node_id_vec = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
node_capacity_vec = vec![4000, 1000, 1000, 3000, 1000, 1000, 2000, 10000, 2000];
node_zone_vec = vec!["A", "B", "C", "C", "C", "B", "G", "H", "I"]
.into_iter()
.map(|x| x.to_string())
.collect();
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
cl.calculate_partition_assignation();
check_assignation(&cl);
node_capacity_vec = vec![4000, 1000, 2000, 7000, 1000, 1000, 2000, 10000, 2000];
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
cl.calculate_partition_assignation();
check_assignation(&cl);
node_capacity_vec = vec![4000, 4000, 2000, 7000, 1000, 9000, 2000, 10, 2000];
update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
cl.calculate_partition_assignation();
check_assignation(&cl);
}
}