garagehq.deuxfleurs.fr/content/blog/2023-12-preserving-read-after-write-consistency/index.md

191 lines
10 KiB
Markdown
Raw Normal View History

+++
title="Maintaining Read-after-Write consistency in all circumstances"
date=2023-12-25
+++
*Garage is a data storage system that is based on CRDTs internally. It does not
use a consensus algorithm such as Raft, therefore maintaining consistency in a
cluster has to be done by other means. Since its inception, Garage has made use
of read and write quorums to guarantee read-after-write consistency, the only
consistency guarantee it provides. However, as of Garage v0.9.0, this guarantee
is not maintained when the composition of a cluster is updated and data is
moved between storage nodes. As part of our current NLnet-funded project, we
are developping a solution to this problem, that is briefly explained in this
blog post.*
<!-- more -->
---
Garage provides mainly one consistency guarantee, read-after-write for objects, which can be described as follows:
**Read-after-write consistency.** *If a client A writes an object x (e.g. using PutObject) and receives a `HTTP 200 OK` response, and later a client B tries to read object x (e.g. using GetObject), then B will read the version written by A, or a more recent version.*
The consistency guarantee offered by Garage is slightly more general than this
simplistic formulation, as it also applies to other S3 endpoints such as
ListObjects, which are always guaranteed to reflect the latest version of
objects inserted in a bucket.
This consistency guarantee at the level of objects in the S3 API is in fact a
reflection of read-after-write consistency in the internal metadata engine of
Garage (which is a distributed key/value store with CRDT values). Reads and
writes to metadata tables use quorums of 2 out of 3 nodes for each operation,
ensuring that if operation B starts after operation A has completed, then there
is at least one node that is handling both operation A and B. In the case where
A is a write (an update) and B is a read, that node will have the opportunity
to return the value written in A to the reading client B. A visual depiction
of this process can be found in [this
presentation](https://git.deuxfleurs.fr/Deuxfleurs/garage/src/commit/a8b0e01f88b947bc34c05d818d51860b4d171967/doc/talks/2023-09-20-ocp/talk.pdf)
on slide 32 (pages 57-64), and the algorithm is written down on slide 33 (page 54).
Note that read-after-write guarantees [are broken and have always
been](https://git.deuxfleurs.fr/Deuxfleurs/garage/issues/147) for the bucket
and access key tables, which might not be something we can fix due to different
requirements on the quorums.
## Current issues with Read-after-Write consistency
Maintaining Read-after-Write consistency depends crucially on the intersection
of the quorums being non-empty. There is however a scenario where these quorums
may be empty: when the set of nodes affected to storing some entries changes,
for instance when nodes are added or removed and data is being rebalanced
between nodes.
### A concrete example
Take the case of a partition (a subset of the data stored by Garage) which is
stored on nodes A, B and C. At some point, a layout change occurs in the
cluster, and after the change, nodes A, D and E are responsible for storing the
partition. All read and write operations that were initiated before the layout
change, or by nodes that were not yet aware of the new layout version, will be
directed to nodes A, B and C, and will be handled by a quorum of two nodes among
those three. However, once the new layout is introduced in the cluster, read
and write operations will start being directed to nodes A, D and E, expecting a
quorum of two nodes among this new set of three nodes.
Crucially, coordinating when operations start being directed to the new layout
is a hard problem, and in all cases we must assume that due to some network
asynchrony, there can still be some nodes that keep sending requests to nodes
A, B and C for a long time even after everyone else is aware of the new layout.
Moreover, data will be progressively moved from nodes B and C to nodes D and E,
which can take a long time depending on the quantity of data. This creates a
period of uncertainty as to where exactly the data is stored in the cluster.
Overall, this basically means that there is no way to guarantee the
intersection-of-quorums property, which is necessary for read-after-write, with
such a simplistic scheme.
Concretely, here is a very simple scenario in which read-after-write is broken:
1. A write operation is directed to nodes A, B and C (the old layout), and
receives OK responses from nodes B and C, forming a quorum, so the write
completes successfully. The written data sent to node A is lost or delayed
for a long time.
2. The new layout version is introduced in the cluster.
3. Before nodes D and E have had the chance to retrieve the data that was
stored on nodes B and C, a read operation for the same key is directed to
nodes A, D and E. This request receives OK responses from nodes D and E,
both containing no data but still forming a quorum of 2 responses. So the
read returns a null value instead of the value that was written before, even
though the write operation reported a success.
### Evidencing the issue with Jepsen testing
The first thing that I had to do for the NLnet project was to develop a testing
framework to show that read-after-write consistency issues could in fact arise
in Garage when the cluster layout was updated.
To make such tests, I chose to use the Jepsen testing framework, which helps us
put distributed software in complex adverse scenarios and verify whether they
respect some claimed consistency guarantees or not. I will not enter into too
much detail on the testing procedure, but suffice to say that issues were
found. More precisely, I was able to show that Garage did guarantee
read-after-write in a variety of adverse scenarios such as network partitions,
node crashes and clock scrambling, but that it was unable to do so as soon as
regular layout updates were introduced.
The progress of the Jepsen testing work is tracked in [PR
#544](https://git.deuxfleurs.fr/Deuxfleurs/garage/pulls/544)
## Fixing Read-after-Write consistency when layouts change
2023-12-01 13:27:33 +00:00
To solve this issue, we will have to keep track of several information in the cluster.
We will also have to adapt our data transfer strategy and our quorums to make sure that
data can be found when it is requested.
Basically, here is how we will make sure that read-after-write is guaranteed:
- Several versions of the cluster layout can be live in the cluster at the same time.
- When multiple cluster layout versions are live, the writes are directed to
all of the live versions.
- Nodes will synchronize data so that the nodes in the newest live layout
version will catch up with the older live layout versions.
- Reads are initially directed to the oldest live layout version, but will
progressively be moved to the newer versions once the synchronizations are
complete.
- Once all nodes are reading from newer layout versions, the oldest live versions
can be pruned and the corresponding data deleted.
More precisely, the following modifications are made to how quorums are used in
read/write operations and how the sync is made:
- Writes are sent to all nodes responsible for the paritition in all live
layout versions, and will return OK only when they receive a quorum of OK
responses for each of the live layout versions. This means that writes could
be a bit slower whan a layout change is being synchronized in the cluster.
- Reads are sent to the newest live layout version for which all nodes have
completed a sync to catch up on existing data, and only expect a quorum of 2
responses among the three nodes of that layout version. This way, reads
always stay as performant as when no layout update is in progress.
- A sync for a new layout version is not initiated until all cluster nodes have
acknowledged receiving that version and having finished all write operations
that were only addressed to previous layout versions. This makes sure that no
data will be missed by the sync: once the sync has started, no more data can
be written only to old layout versions. All of the writes will also be
directed to the new nodes (more exactly: all data that the source nodes of
the sync does not yet contain when the sync starts, is written by a write
operation that is also directed at a quorum of nodes among the new ones),
meaning that at the end of the sync, a read quorum among the new nodes will
necessarily return an up-to-date copy of all of the data.
- The oldest live layout version can be pruned once all nodes have completed a
sync to a newer version AND all nodes have acknowleged that fact, signaling
that they are no longer reading from that old version and are now reading
from a newer version instead. After being pruned, the old layout version is
no longer live, and nodes that are no longer designated to store data in the
newer layout versions can simply delete the data that they were storing.
As you can see, the previous algorithm needs to keep track of a lot of
information in the cluster. Ths information is kept in three "layout update trackers",
which keep track of the following information:
- The `ack` layout tracker keeps track of nodes receiving the latest layout
versions. A node will not "ack" (acknowledge) a new layout version while it
still has outstanding write operations that were not directed to the nodes
included in that version. Once all nodes have acknowledged a new version, we
know that all write operations that are made in the cluster are directed to
the nodes that were added in this layout version.
- The `sync` layout tracker keeps track of nodes finishing a full metadata table
sync, that was started after all nodes `ack`'ed the new layout version.
- The `sync_ack` layout tracker keeps track of nodes receiving the `sync`
tracker update for all cluster nodes, and thus starting to direct reads to
the newly synchronized layout version. This makes it possible to know when no
more nodes are reading from an old version, at which point the corresponding
data can be deleted.
## Current status and future work