forked from lx/netapp
Compare commits
1 commit
Author | SHA1 | Date | |
---|---|---|---|
448709c1db |
23 changed files with 1197 additions and 3685 deletions
49
.drone.yml
49
.drone.yml
|
@ -1,54 +1,41 @@
|
|||
---
|
||||
kind: pipeline
|
||||
name: default
|
||||
|
||||
workspace:
|
||||
base: /drone
|
||||
|
||||
clone:
|
||||
disable: true
|
||||
|
||||
steps:
|
||||
- name: clone
|
||||
image: alpine/git
|
||||
commands:
|
||||
- mkdir -p cargo
|
||||
- git clone $DRONE_GIT_HTTP_URL
|
||||
- cd netapp
|
||||
- git checkout $DRONE_COMMIT
|
||||
|
||||
- name: style
|
||||
image: rust:1.58-buster
|
||||
image: rustlang/rust:nightly
|
||||
environment:
|
||||
CARGO_HOME: /drone/cargo
|
||||
volumes:
|
||||
- name: cargo
|
||||
path: /drone/cargo
|
||||
commands:
|
||||
- rustup component add rustfmt clippy
|
||||
- cd netapp
|
||||
- cargo fmt -- --check
|
||||
- cargo clippy --all-features -- --deny warnings
|
||||
- cargo clippy --example fullmesh -- --deny warnings
|
||||
- cargo clippy --example basalt --all-features -- --deny warnings
|
||||
|
||||
- name: build
|
||||
image: rust:1.58-buster
|
||||
image: rustlang/rust:nightly
|
||||
environment:
|
||||
CARGO_HOME: /drone/cargo
|
||||
volumes:
|
||||
- name: cargo
|
||||
path: /drone/cargo
|
||||
commands:
|
||||
- apt-get update
|
||||
- apt-get install --yes libsodium-dev
|
||||
- cargo install -f cargo-all-features
|
||||
- cd netapp
|
||||
- cargo build-all-features
|
||||
- cargo build --example fullmesh
|
||||
- cargo build --example basalt --features "basalt"
|
||||
|
||||
- name: test
|
||||
image: rust:1.58-buster
|
||||
environment:
|
||||
CARGO_HOME: /drone/cargo
|
||||
volumes:
|
||||
- name: cargo
|
||||
path: /drone/cargo
|
||||
commands:
|
||||
- apt-get update
|
||||
- apt-get install --yes libsodium-dev
|
||||
- cargo test --all-features -- --test-threads 1
|
||||
|
||||
volumes:
|
||||
- name: cargo
|
||||
temp: {}
|
||||
---
|
||||
kind: signature
|
||||
hmac: f0d1a9e8d85a22c1d9084b4d90c9930be9700da52284f1875ece996cc52a6ce9
|
||||
|
||||
...
|
||||
|
|
624
Cargo.lock
generated
624
Cargo.lock
generated
File diff suppressed because it is too large
Load diff
30
Cargo.toml
30
Cargo.toml
|
@ -1,6 +1,6 @@
|
|||
[package]
|
||||
name = "netapp"
|
||||
version = "0.5.4"
|
||||
version = "0.2.0"
|
||||
authors = ["Alex Auvolat <alex@adnab.me>"]
|
||||
edition = "2018"
|
||||
license-file = "LICENSE"
|
||||
|
@ -16,38 +16,32 @@ name = "netapp"
|
|||
|
||||
[features]
|
||||
default = []
|
||||
basalt = ["lru"]
|
||||
telemetry = ["opentelemetry", "opentelemetry-contrib"]
|
||||
basalt = ["lru", "rand"]
|
||||
|
||||
[dependencies]
|
||||
futures = "0.3.17"
|
||||
pin-project = "1.0.10"
|
||||
tokio = { version = "1.0", default-features = false, features = ["net", "rt", "rt-multi-thread", "sync", "time", "macros", "io-util", "signal"] }
|
||||
tokio-util = { version = "0.7", default-features = false, features = ["compat", "io"] }
|
||||
tokio-stream = "0.1.7"
|
||||
tokio = { version = "1.0", default-features = false, features = ["net", "rt", "rt-multi-thread", "sync", "time", "macros", "io-util"] }
|
||||
tokio-util = { version = "0.6.8", default-features = false, features = ["compat"] }
|
||||
|
||||
serde = { version = "1.0", default-features = false, features = ["derive", "rc"] }
|
||||
rmp-serde = "0.15"
|
||||
serde = { version = "1.0", default-features = false, features = ["derive"] }
|
||||
rmp-serde = "0.14.3"
|
||||
hex = "0.4.2"
|
||||
base64 = "0.12.1"
|
||||
|
||||
rand = { version = "0.8" }
|
||||
rand = { version = "0.5.5", optional = true }
|
||||
|
||||
log = "0.4.8"
|
||||
env_logger = "0.8"
|
||||
arc-swap = "1.1"
|
||||
async-trait = "0.1.7"
|
||||
err-derive = "0.3"
|
||||
bytes = "1.2"
|
||||
lru = { version = "0.7", optional = true }
|
||||
cfg-if = "1.0"
|
||||
err-derive = "0.2.3"
|
||||
bytes = "0.6.0"
|
||||
lru = { version = "0.6", optional = true }
|
||||
|
||||
sodiumoxide = { version = "0.2.5-0", package = "kuska-sodiumoxide" }
|
||||
kuska-handshake = { version = "0.2.0", features = ["default", "async_std"] }
|
||||
|
||||
opentelemetry = { version = "0.17", optional = true }
|
||||
opentelemetry-contrib = { version = "0.9", optional = true }
|
||||
|
||||
[dev-dependencies]
|
||||
env_logger = "0.9"
|
||||
structopt = { version = "0.3", default-features = false }
|
||||
chrono = "0.4"
|
||||
|
||||
|
|
7
Makefile
7
Makefile
|
@ -1,10 +1,5 @@
|
|||
all:
|
||||
#cargo build --all-features
|
||||
cargo build
|
||||
cargo build --example fullmesh
|
||||
cargo build --all-features --example basalt
|
||||
RUST_LOG=netapp=trace,fullmesh=trace cargo run --example fullmesh -- -n 3242ce79e05e8b6a0e43441fbd140a906e13f335f298ae3a52f29784abbab500 -p 6c304114a0e1018bbe60502a34d33f4f439f370856c3333dda2726da01eb93a4894b7ef7249a71f11d342b69702f1beb7c93ec95fbcf122ad1eca583bb0629e7
|
||||
#RUST_LOG=netapp=debug,fullmesh=debug cargo run --example fullmesh
|
||||
#RUST_LOG=netapp=debug cargo run --example fullmesh -- -n 3242ce79e05e8b6a0e43441fbd140a906e13f335f298ae3a52f29784abbab500 -p 6c304114a0e1018bbe60502a34d33f4f439f370856c3333dda2726da01eb93a4894b7ef7249a71f11d342b69702f1beb7c93ec95fbcf122ad1eca583bb0629e7
|
||||
|
||||
test:
|
||||
cargo test --all-features -- --test-threads 1
|
||||
|
|
|
@ -1,23 +1,20 @@
|
|||
use std::io::Write;
|
||||
use std::net::SocketAddr;
|
||||
use std::sync::Arc;
|
||||
use std::time::Duration;
|
||||
|
||||
use log::{debug, info, warn};
|
||||
|
||||
use async_trait::async_trait;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use structopt::StructOpt;
|
||||
|
||||
use sodiumoxide::crypto::auth;
|
||||
use sodiumoxide::crypto::sign::ed25519;
|
||||
|
||||
use tokio::sync::watch;
|
||||
|
||||
use netapp::endpoint::*;
|
||||
use netapp::message::*;
|
||||
use netapp::peering::basalt::*;
|
||||
use netapp::util::parse_peer_addr;
|
||||
use netapp::{NetApp, NodeID};
|
||||
use netapp::proto::*;
|
||||
use netapp::NetApp;
|
||||
|
||||
#[derive(StructOpt, Debug)]
|
||||
#[structopt(name = "netapp")]
|
||||
|
@ -53,12 +50,6 @@ pub struct Opt {
|
|||
reset_count: usize,
|
||||
}
|
||||
|
||||
struct Example {
|
||||
netapp: Arc<NetApp>,
|
||||
basalt: Arc<Basalt>,
|
||||
example_endpoint: Arc<Endpoint<ExampleMessage, Self>>,
|
||||
}
|
||||
|
||||
#[tokio::main]
|
||||
async fn main() {
|
||||
env_logger::Builder::new()
|
||||
|
@ -94,11 +85,16 @@ async fn main() {
|
|||
info!("KYEV SK {}", hex::encode(&privkey));
|
||||
info!("KYEV PK {}", hex::encode(&privkey.public_key()));
|
||||
|
||||
let netapp = NetApp::new(0u64, netid, privkey);
|
||||
let netapp = NetApp::new(netid, privkey);
|
||||
|
||||
let mut bootstrap_peers = vec![];
|
||||
for peer in opt.bootstrap_peers.iter() {
|
||||
bootstrap_peers.push(parse_peer_addr(peer).expect("Invalid peer address"));
|
||||
if let Some(delim) = peer.find('@') {
|
||||
let (key, ip) = peer.split_at(delim);
|
||||
let pubkey = ed25519::PublicKey::from_slice(&hex::decode(&key).unwrap()).unwrap();
|
||||
let ip = ip[1..].parse::<SocketAddr>().unwrap();
|
||||
bootstrap_peers.push((pubkey, ip));
|
||||
}
|
||||
}
|
||||
|
||||
let basalt_params = BasaltParams {
|
||||
|
@ -108,44 +104,40 @@ async fn main() {
|
|||
reset_interval: Duration::from_secs(opt.reset_interval),
|
||||
reset_count: opt.reset_count,
|
||||
};
|
||||
let basalt = Basalt::new(netapp.clone(), bootstrap_peers, basalt_params);
|
||||
let peering = Basalt::new(netapp.clone(), bootstrap_peers, basalt_params);
|
||||
|
||||
let example = Arc::new(Example {
|
||||
netapp: netapp.clone(),
|
||||
basalt,
|
||||
example_endpoint: netapp.endpoint("__netapp/examples/basalt.rs/Example".into()),
|
||||
});
|
||||
example.example_endpoint.set_handler(example.clone());
|
||||
netapp.add_msg_handler::<ExampleMessage, _, _>(
|
||||
|_from: ed25519::PublicKey, msg: ExampleMessage| {
|
||||
debug!("Got example message: {:?}, sending example response", msg);
|
||||
async {
|
||||
ExampleResponse {
|
||||
example_field: false,
|
||||
}
|
||||
}
|
||||
},
|
||||
);
|
||||
|
||||
let listen_addr = opt.listen_addr.parse().unwrap();
|
||||
let public_addr = opt.public_addr.map(|x| x.parse().unwrap());
|
||||
|
||||
let watch_cancel = netapp::util::watch_ctrl_c();
|
||||
|
||||
tokio::join!(
|
||||
example.clone().sampling_loop(watch_cancel.clone()),
|
||||
example
|
||||
.netapp
|
||||
.clone()
|
||||
.listen(listen_addr, public_addr, watch_cancel.clone()),
|
||||
example.basalt.clone().run(watch_cancel.clone()),
|
||||
sampling_loop(netapp.clone(), peering.clone()),
|
||||
netapp.listen(listen_addr, public_addr),
|
||||
peering.run(),
|
||||
);
|
||||
}
|
||||
|
||||
impl Example {
|
||||
async fn sampling_loop(self: Arc<Self>, must_exit: watch::Receiver<bool>) {
|
||||
while !*must_exit.borrow() {
|
||||
async fn sampling_loop(netapp: Arc<NetApp>, basalt: Arc<Basalt>) {
|
||||
loop {
|
||||
tokio::time::sleep(Duration::from_secs(10)).await;
|
||||
|
||||
let peers = self.basalt.sample(10);
|
||||
let peers = basalt.sample(10);
|
||||
for p in peers {
|
||||
debug!("kyev S {}", hex::encode(p));
|
||||
|
||||
let self2 = self.clone();
|
||||
let netapp2 = netapp.clone();
|
||||
tokio::spawn(async move {
|
||||
match self2
|
||||
.example_endpoint
|
||||
.call(&p, ExampleMessage { example_field: 42 }, PRIO_NORMAL)
|
||||
match netapp2
|
||||
.request(&p, ExampleMessage { example_field: 42 }, PRIO_NORMAL)
|
||||
.await
|
||||
{
|
||||
Ok(resp) => debug!("Got example response: {:?}", resp),
|
||||
|
@ -155,17 +147,6 @@ impl Example {
|
|||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
impl EndpointHandler<ExampleMessage> for Example {
|
||||
async fn handle(self: &Arc<Self>, msg: &ExampleMessage, _from: NodeID) -> ExampleResponse {
|
||||
debug!("Got example message: {:?}, sending example response", msg);
|
||||
ExampleResponse {
|
||||
example_field: false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
struct ExampleMessage {
|
||||
|
@ -178,5 +159,6 @@ struct ExampleResponse {
|
|||
}
|
||||
|
||||
impl Message for ExampleMessage {
|
||||
const KIND: MessageKind = 0x99000001;
|
||||
type Response = ExampleResponse;
|
||||
}
|
||||
|
|
|
@ -1,24 +1,16 @@
|
|||
use std::io::Write;
|
||||
use std::net::SocketAddr;
|
||||
use std::sync::Arc;
|
||||
use std::time::Duration;
|
||||
|
||||
use async_trait::async_trait;
|
||||
use bytes::Bytes;
|
||||
use futures::{stream, StreamExt};
|
||||
use log::*;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use log::info;
|
||||
|
||||
use structopt::StructOpt;
|
||||
use tokio::sync::watch;
|
||||
|
||||
use sodiumoxide::crypto::auth;
|
||||
use sodiumoxide::crypto::sign::ed25519;
|
||||
|
||||
use netapp::endpoint::*;
|
||||
use netapp::message::*;
|
||||
use netapp::peering::fullmesh::*;
|
||||
use netapp::util::*;
|
||||
use netapp::{NetApp, NodeID};
|
||||
use netapp::NetApp;
|
||||
use netapp::NodeID;
|
||||
|
||||
#[derive(StructOpt, Debug)]
|
||||
#[structopt(name = "netapp")]
|
||||
|
@ -72,148 +64,23 @@ async fn main() {
|
|||
};
|
||||
|
||||
info!("Node private key: {}", hex::encode(&privkey));
|
||||
info!("Node public key: {}", hex::encode(privkey.public_key()));
|
||||
info!("Node public key: {}", hex::encode(&privkey.public_key()));
|
||||
|
||||
let public_addr = opt.public_addr.map(|x| x.parse().unwrap());
|
||||
let listen_addr: SocketAddr = opt.listen_addr.parse().unwrap();
|
||||
info!("Node public address: {:?}", public_addr);
|
||||
info!("Node listen address: {}", listen_addr);
|
||||
|
||||
let netapp = NetApp::new(0u64, netid.clone(), privkey.clone());
|
||||
let netapp = NetApp::new(netid, privkey);
|
||||
|
||||
let mut bootstrap_peers = vec![];
|
||||
for peer in opt.bootstrap_peers.iter() {
|
||||
bootstrap_peers.push(parse_peer_addr(peer).expect("Invalid peer address"));
|
||||
}
|
||||
|
||||
let peering = FullMeshPeeringStrategy::new(
|
||||
netapp.clone(),
|
||||
bootstrap_peers,
|
||||
public_addr.map(|a| SocketAddr::new(a, listen_addr.port())),
|
||||
);
|
||||
|
||||
info!("Add more peers to this mesh by running: fullmesh -n {} -l 127.0.0.1:$((1000 + $RANDOM)) -b {}@{}",
|
||||
hex::encode(&netid),
|
||||
hex::encode(privkey.public_key()),
|
||||
listen_addr);
|
||||
|
||||
let watch_cancel = netapp::util::watch_ctrl_c();
|
||||
|
||||
let example = Arc::new(Example {
|
||||
netapp: netapp.clone(),
|
||||
fullmesh: peering.clone(),
|
||||
example_endpoint: netapp.endpoint("__netapp/examples/fullmesh.rs/Example".into()),
|
||||
});
|
||||
example.example_endpoint.set_handler(example.clone());
|
||||
|
||||
tokio::join!(
|
||||
example.exchange_loop(watch_cancel.clone()),
|
||||
netapp.listen(listen_addr, public_addr, watch_cancel.clone()),
|
||||
peering.run(watch_cancel),
|
||||
);
|
||||
}
|
||||
|
||||
// ----
|
||||
|
||||
struct Example {
|
||||
netapp: Arc<NetApp>,
|
||||
fullmesh: Arc<FullMeshPeeringStrategy>,
|
||||
example_endpoint: Arc<Endpoint<ExampleMessage, Self>>,
|
||||
}
|
||||
|
||||
impl Example {
|
||||
async fn exchange_loop(self: Arc<Self>, must_exit: watch::Receiver<bool>) {
|
||||
let mut i = 12000;
|
||||
while !*must_exit.borrow() {
|
||||
tokio::time::sleep(Duration::from_secs(2)).await;
|
||||
|
||||
let peers = self.fullmesh.get_peer_list();
|
||||
for p in peers.iter() {
|
||||
let id = p.id;
|
||||
if id == self.netapp.id {
|
||||
continue;
|
||||
}
|
||||
i += 1;
|
||||
let example_field = i;
|
||||
let self2 = self.clone();
|
||||
tokio::spawn(async move {
|
||||
info!(
|
||||
"Send example query {} to {}",
|
||||
example_field,
|
||||
hex::encode(id)
|
||||
);
|
||||
// Fake data stream with some delays in item production
|
||||
let stream =
|
||||
Box::pin(stream::iter([100, 200, 300, 400]).then(|x| async move {
|
||||
tokio::time::sleep(Duration::from_millis(500)).await;
|
||||
Ok(Bytes::from(vec![(x % 256) as u8; 133 * x]))
|
||||
}));
|
||||
match self2
|
||||
.example_endpoint
|
||||
.call_streaming(
|
||||
&id,
|
||||
Req::new(ExampleMessage { example_field })
|
||||
.unwrap()
|
||||
.with_stream(stream),
|
||||
PRIO_NORMAL,
|
||||
)
|
||||
.await
|
||||
{
|
||||
Ok(resp) => {
|
||||
let (resp, stream) = resp.into_parts();
|
||||
info!(
|
||||
"Got example response to {} from {}: {:?}",
|
||||
example_field,
|
||||
hex::encode(id),
|
||||
resp
|
||||
);
|
||||
let mut stream = stream.unwrap();
|
||||
while let Some(x) = stream.next().await {
|
||||
info!("Response: stream got bytes {:?}", x.map(|b| b.len()));
|
||||
}
|
||||
}
|
||||
Err(e) => warn!("Error with example request: {}", e),
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
if let Some(delim) = peer.find('@') {
|
||||
let (key, ip) = peer.split_at(delim);
|
||||
let pubkey = NodeID::from_slice(&hex::decode(&key).unwrap()).unwrap();
|
||||
let ip = ip[1..].parse::<SocketAddr>().unwrap();
|
||||
bootstrap_peers.push((pubkey, ip));
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
impl StreamingEndpointHandler<ExampleMessage> for Example {
|
||||
async fn handle(
|
||||
self: &Arc<Self>,
|
||||
mut msg: Req<ExampleMessage>,
|
||||
_from: NodeID,
|
||||
) -> Resp<ExampleMessage> {
|
||||
info!(
|
||||
"Got example message: {:?}, sending example response",
|
||||
msg.msg()
|
||||
);
|
||||
let source_stream = msg.take_stream().unwrap();
|
||||
// Return same stream with 300ms delay
|
||||
let new_stream = Box::pin(source_stream.then(|x| async move {
|
||||
tokio::time::sleep(Duration::from_millis(300)).await;
|
||||
x
|
||||
}));
|
||||
Resp::new(ExampleResponse {
|
||||
example_field: false,
|
||||
})
|
||||
.with_stream(new_stream)
|
||||
}
|
||||
}
|
||||
let peering = FullMeshPeeringStrategy::new(netapp.clone(), bootstrap_peers);
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
struct ExampleMessage {
|
||||
example_field: usize,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
struct ExampleResponse {
|
||||
example_field: bool,
|
||||
}
|
||||
|
||||
impl Message for ExampleMessage {
|
||||
type Response = ExampleResponse;
|
||||
let listen_addr = opt.listen_addr.parse().unwrap();
|
||||
let public_addr = opt.public_addr.map(|x| x.parse().unwrap());
|
||||
tokio::join!(netapp.listen(listen_addr, public_addr), peering.run(),);
|
||||
}
|
||||
|
|
186
src/bytes_buf.rs
186
src/bytes_buf.rs
|
@ -1,186 +0,0 @@
|
|||
use std::cmp::Ordering;
|
||||
use std::collections::VecDeque;
|
||||
|
||||
use bytes::BytesMut;
|
||||
|
||||
pub use bytes::Bytes;
|
||||
|
||||
/// A circular buffer of bytes, internally represented as a list of Bytes
|
||||
/// for optimization, but that for all intent and purposes acts just like
|
||||
/// a big byte slice which can be extended on the right and from which
|
||||
/// stuff can be taken on the left.
|
||||
pub struct BytesBuf {
|
||||
buf: VecDeque<Bytes>,
|
||||
buf_len: usize,
|
||||
}
|
||||
|
||||
impl BytesBuf {
|
||||
/// Creates a new empty BytesBuf
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
buf: VecDeque::new(),
|
||||
buf_len: 0,
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the number of bytes stored in the BytesBuf
|
||||
#[inline]
|
||||
pub fn len(&self) -> usize {
|
||||
self.buf_len
|
||||
}
|
||||
|
||||
/// Returns true iff the BytesBuf contains zero bytes
|
||||
#[inline]
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.buf_len == 0
|
||||
}
|
||||
|
||||
/// Adds some bytes to the right of the buffer
|
||||
pub fn extend(&mut self, b: Bytes) {
|
||||
if !b.is_empty() {
|
||||
self.buf_len += b.len();
|
||||
self.buf.push_back(b);
|
||||
}
|
||||
}
|
||||
|
||||
/// Takes the whole content of the buffer and returns it as a single Bytes unit
|
||||
pub fn take_all(&mut self) -> Bytes {
|
||||
if self.buf.is_empty() {
|
||||
Bytes::new()
|
||||
} else if self.buf.len() == 1 {
|
||||
self.buf_len = 0;
|
||||
self.buf.pop_back().unwrap()
|
||||
} else {
|
||||
let mut ret = BytesMut::with_capacity(self.buf_len);
|
||||
for b in self.buf.iter() {
|
||||
ret.extend_from_slice(&b[..]);
|
||||
}
|
||||
self.buf.clear();
|
||||
self.buf_len = 0;
|
||||
ret.freeze()
|
||||
}
|
||||
}
|
||||
|
||||
/// Takes at most max_len bytes from the left of the buffer
|
||||
pub fn take_max(&mut self, max_len: usize) -> Bytes {
|
||||
if self.buf_len <= max_len {
|
||||
self.take_all()
|
||||
} else {
|
||||
self.take_exact_ok(max_len)
|
||||
}
|
||||
}
|
||||
|
||||
/// Take exactly len bytes from the left of the buffer, returns None if
|
||||
/// the BytesBuf doesn't contain enough data
|
||||
pub fn take_exact(&mut self, len: usize) -> Option<Bytes> {
|
||||
if self.buf_len < len {
|
||||
None
|
||||
} else {
|
||||
Some(self.take_exact_ok(len))
|
||||
}
|
||||
}
|
||||
|
||||
fn take_exact_ok(&mut self, len: usize) -> Bytes {
|
||||
assert!(len <= self.buf_len);
|
||||
let front = self.buf.pop_front().unwrap();
|
||||
match front.len().cmp(&len) {
|
||||
Ordering::Greater => {
|
||||
self.buf.push_front(front.slice(len..));
|
||||
self.buf_len -= len;
|
||||
front.slice(..len)
|
||||
}
|
||||
Ordering::Equal => {
|
||||
self.buf_len -= len;
|
||||
front
|
||||
}
|
||||
Ordering::Less => {
|
||||
let mut ret = BytesMut::with_capacity(len);
|
||||
ret.extend_from_slice(&front[..]);
|
||||
self.buf_len -= front.len();
|
||||
while ret.len() < len {
|
||||
let front = self.buf.pop_front().unwrap();
|
||||
if front.len() > len - ret.len() {
|
||||
let take = len - ret.len();
|
||||
ret.extend_from_slice(&front[..take]);
|
||||
self.buf.push_front(front.slice(take..));
|
||||
self.buf_len -= take;
|
||||
break;
|
||||
} else {
|
||||
ret.extend_from_slice(&front[..]);
|
||||
self.buf_len -= front.len();
|
||||
}
|
||||
}
|
||||
ret.freeze()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Return the internal sequence of Bytes slices that make up the buffer
|
||||
pub fn into_slices(self) -> VecDeque<Bytes> {
|
||||
self.buf
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for BytesBuf {
|
||||
fn default() -> Self {
|
||||
Self::new()
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Bytes> for BytesBuf {
|
||||
fn from(b: Bytes) -> BytesBuf {
|
||||
let mut ret = BytesBuf::new();
|
||||
ret.extend(b);
|
||||
ret
|
||||
}
|
||||
}
|
||||
|
||||
impl From<BytesBuf> for Bytes {
|
||||
fn from(mut b: BytesBuf) -> Bytes {
|
||||
b.take_all()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_bytes_buf() {
|
||||
let mut buf = BytesBuf::new();
|
||||
assert!(buf.len() == 0);
|
||||
assert!(buf.is_empty());
|
||||
|
||||
buf.extend(Bytes::from(b"Hello, world!".to_vec()));
|
||||
assert!(buf.len() == 13);
|
||||
assert!(!buf.is_empty());
|
||||
|
||||
buf.extend(Bytes::from(b"1234567890".to_vec()));
|
||||
assert!(buf.len() == 23);
|
||||
assert!(!buf.is_empty());
|
||||
|
||||
assert_eq!(
|
||||
buf.take_all(),
|
||||
Bytes::from(b"Hello, world!1234567890".to_vec())
|
||||
);
|
||||
assert!(buf.len() == 0);
|
||||
assert!(buf.is_empty());
|
||||
|
||||
buf.extend(Bytes::from(b"1234567890".to_vec()));
|
||||
buf.extend(Bytes::from(b"Hello, world!".to_vec()));
|
||||
assert!(buf.len() == 23);
|
||||
assert!(!buf.is_empty());
|
||||
|
||||
assert_eq!(buf.take_max(12), Bytes::from(b"1234567890He".to_vec()));
|
||||
assert!(buf.len() == 11);
|
||||
|
||||
assert_eq!(buf.take_exact(12), None);
|
||||
assert!(buf.len() == 11);
|
||||
assert_eq!(
|
||||
buf.take_exact(11),
|
||||
Some(Bytes::from(b"llo, world!".to_vec()))
|
||||
);
|
||||
assert!(buf.len() == 0);
|
||||
assert!(buf.is_empty());
|
||||
}
|
||||
}
|
292
src/client.rs
292
src/client.rs
|
@ -1,292 +0,0 @@
|
|||
use std::collections::HashMap;
|
||||
use std::net::SocketAddr;
|
||||
use std::pin::Pin;
|
||||
use std::sync::atomic::{self, AtomicU32};
|
||||
use std::sync::{Arc, Mutex};
|
||||
use std::task::Poll;
|
||||
|
||||
use arc_swap::ArcSwapOption;
|
||||
use async_trait::async_trait;
|
||||
use bytes::Bytes;
|
||||
use log::{debug, error, trace};
|
||||
|
||||
use futures::io::AsyncReadExt;
|
||||
use futures::Stream;
|
||||
use kuska_handshake::async_std::{handshake_client, BoxStream};
|
||||
use tokio::net::TcpStream;
|
||||
use tokio::select;
|
||||
use tokio::sync::{mpsc, oneshot, watch};
|
||||
use tokio_util::compat::*;
|
||||
|
||||
#[cfg(feature = "telemetry")]
|
||||
use opentelemetry::{
|
||||
trace::{FutureExt, Span, SpanKind, TraceContextExt, Tracer},
|
||||
Context, KeyValue,
|
||||
};
|
||||
#[cfg(feature = "telemetry")]
|
||||
use opentelemetry_contrib::trace::propagator::binary::*;
|
||||
|
||||
use crate::error::*;
|
||||
use crate::message::*;
|
||||
use crate::netapp::*;
|
||||
use crate::recv::*;
|
||||
use crate::send::*;
|
||||
use crate::stream::*;
|
||||
use crate::util::*;
|
||||
|
||||
pub(crate) struct ClientConn {
|
||||
pub(crate) remote_addr: SocketAddr,
|
||||
pub(crate) peer_id: NodeID,
|
||||
|
||||
query_send: ArcSwapOption<mpsc::UnboundedSender<SendItem>>,
|
||||
|
||||
next_query_number: AtomicU32,
|
||||
inflight: Mutex<HashMap<RequestID, oneshot::Sender<ByteStream>>>,
|
||||
}
|
||||
|
||||
impl ClientConn {
|
||||
pub(crate) async fn init(
|
||||
netapp: Arc<NetApp>,
|
||||
socket: TcpStream,
|
||||
peer_id: NodeID,
|
||||
) -> Result<(), Error> {
|
||||
let remote_addr = socket.peer_addr()?;
|
||||
let mut socket = socket.compat();
|
||||
|
||||
// Do handshake to authenticate and prove our identity to server
|
||||
let handshake = handshake_client(
|
||||
&mut socket,
|
||||
netapp.netid.clone(),
|
||||
netapp.id,
|
||||
netapp.privkey.clone(),
|
||||
peer_id,
|
||||
)
|
||||
.await?;
|
||||
|
||||
debug!(
|
||||
"Handshake complete (client) with {}@{}",
|
||||
hex::encode(peer_id),
|
||||
remote_addr
|
||||
);
|
||||
|
||||
// Create BoxStream layer that encodes content
|
||||
let (read, write) = socket.split();
|
||||
let (mut read, write) =
|
||||
BoxStream::from_handshake(read, write, handshake, 0x8000).split_read_write();
|
||||
|
||||
// Before doing anything, receive version tag and
|
||||
// check they are running the same version as us
|
||||
let mut their_version_tag = VersionTag::default();
|
||||
read.read_exact(&mut their_version_tag[..]).await?;
|
||||
if their_version_tag != netapp.version_tag {
|
||||
let msg = format!(
|
||||
"different version tags: {} (theirs) vs. {} (ours)",
|
||||
hex::encode(their_version_tag),
|
||||
hex::encode(netapp.version_tag)
|
||||
);
|
||||
error!("Cannot connect to {}: {}", hex::encode(&peer_id[..8]), msg);
|
||||
return Err(Error::VersionMismatch(msg));
|
||||
}
|
||||
|
||||
// Build and launch stuff that manages sending requests client-side
|
||||
let (query_send, query_recv) = mpsc::unbounded_channel();
|
||||
|
||||
let (stop_recv_loop, stop_recv_loop_recv) = watch::channel(false);
|
||||
|
||||
let conn = Arc::new(ClientConn {
|
||||
remote_addr,
|
||||
peer_id,
|
||||
next_query_number: AtomicU32::from(RequestID::default()),
|
||||
query_send: ArcSwapOption::new(Some(Arc::new(query_send))),
|
||||
inflight: Mutex::new(HashMap::new()),
|
||||
});
|
||||
|
||||
netapp.connected_as_client(peer_id, conn.clone());
|
||||
|
||||
let debug_name = format!("CLI {}", hex::encode(&peer_id[..8]));
|
||||
|
||||
tokio::spawn(async move {
|
||||
let debug_name_2 = debug_name.clone();
|
||||
let send_future = tokio::spawn(conn.clone().send_loop(query_recv, write, debug_name_2));
|
||||
|
||||
let conn2 = conn.clone();
|
||||
let recv_future = tokio::spawn(async move {
|
||||
select! {
|
||||
r = conn2.recv_loop(read, debug_name) => r,
|
||||
_ = await_exit(stop_recv_loop_recv) => Ok(())
|
||||
}
|
||||
});
|
||||
|
||||
send_future.await.log_err("ClientConn send_loop");
|
||||
|
||||
// FIXME: should do here: wait for inflight requests to all have their response
|
||||
stop_recv_loop
|
||||
.send(true)
|
||||
.log_err("ClientConn send true to stop_recv_loop");
|
||||
|
||||
recv_future.await.log_err("ClientConn recv_loop");
|
||||
|
||||
// Make sure we don't wait on any more requests that won't
|
||||
// have a response
|
||||
conn.inflight.lock().unwrap().clear();
|
||||
|
||||
netapp.disconnected_as_client(&peer_id, conn);
|
||||
});
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn close(&self) {
|
||||
self.query_send.store(None);
|
||||
}
|
||||
|
||||
pub(crate) async fn call<T>(
|
||||
self: Arc<Self>,
|
||||
req: Req<T>,
|
||||
path: &str,
|
||||
prio: RequestPriority,
|
||||
) -> Result<Resp<T>, Error>
|
||||
where
|
||||
T: Message,
|
||||
{
|
||||
let query_send = self.query_send.load_full().ok_or(Error::ConnectionClosed)?;
|
||||
|
||||
let id = self
|
||||
.next_query_number
|
||||
.fetch_add(1, atomic::Ordering::Relaxed);
|
||||
|
||||
cfg_if::cfg_if! {
|
||||
if #[cfg(feature = "telemetry")] {
|
||||
let tracer = opentelemetry::global::tracer("netapp");
|
||||
let mut span = tracer.span_builder(format!("RPC >> {}", path))
|
||||
.with_kind(SpanKind::Client)
|
||||
.start(&tracer);
|
||||
let propagator = BinaryPropagator::new();
|
||||
let telemetry_id: Bytes = propagator.to_bytes(span.span_context()).to_vec().into();
|
||||
} else {
|
||||
let telemetry_id: Bytes = Bytes::new();
|
||||
}
|
||||
};
|
||||
|
||||
// Encode request
|
||||
let req_enc = req.into_enc(prio, path.as_bytes().to_vec().into(), telemetry_id);
|
||||
let req_msg_len = req_enc.msg.len();
|
||||
let (req_stream, req_order) = req_enc.encode();
|
||||
|
||||
// Send request through
|
||||
let (resp_send, resp_recv) = oneshot::channel();
|
||||
let old = self.inflight.lock().unwrap().insert(id, resp_send);
|
||||
if let Some(old_ch) = old {
|
||||
error!(
|
||||
"Too many inflight requests! RequestID collision. Interrupting previous request."
|
||||
);
|
||||
let _ = old_ch.send(Box::pin(futures::stream::once(async move {
|
||||
Err(std::io::Error::new(
|
||||
std::io::ErrorKind::Other,
|
||||
"RequestID collision, too many inflight requests",
|
||||
))
|
||||
})));
|
||||
}
|
||||
|
||||
debug!(
|
||||
"request: query_send {}, path {}, prio {} (serialized message: {} bytes)",
|
||||
id, path, prio, req_msg_len
|
||||
);
|
||||
|
||||
#[cfg(feature = "telemetry")]
|
||||
span.set_attribute(KeyValue::new("len_query_msg", req_msg_len as i64));
|
||||
|
||||
query_send.send(SendItem::Stream(id, prio, req_order, req_stream))?;
|
||||
|
||||
let canceller = CancelOnDrop::new(id, query_send.as_ref().clone());
|
||||
|
||||
cfg_if::cfg_if! {
|
||||
if #[cfg(feature = "telemetry")] {
|
||||
let stream = resp_recv
|
||||
.with_context(Context::current_with_span(span))
|
||||
.await?;
|
||||
} else {
|
||||
let stream = resp_recv.await?;
|
||||
}
|
||||
}
|
||||
|
||||
let stream = Box::pin(canceller.for_stream(stream));
|
||||
|
||||
let resp_enc = RespEnc::decode(stream).await?;
|
||||
debug!("client: got response to request {} (path {})", id, path);
|
||||
Resp::from_enc(resp_enc)
|
||||
}
|
||||
}
|
||||
|
||||
impl SendLoop for ClientConn {}
|
||||
|
||||
#[async_trait]
|
||||
impl RecvLoop for ClientConn {
|
||||
fn recv_handler(self: &Arc<Self>, id: RequestID, stream: ByteStream) {
|
||||
trace!("ClientConn recv_handler {}", id);
|
||||
|
||||
let mut inflight = self.inflight.lock().unwrap();
|
||||
if let Some(ch) = inflight.remove(&id) {
|
||||
if ch.send(stream).is_err() {
|
||||
debug!("Could not send request response, probably because request was interrupted. Dropping response.");
|
||||
}
|
||||
} else {
|
||||
debug!("Got unexpected response to request {}, dropping it", id);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ----
|
||||
|
||||
struct CancelOnDrop {
|
||||
id: RequestID,
|
||||
query_send: mpsc::UnboundedSender<SendItem>,
|
||||
}
|
||||
|
||||
impl CancelOnDrop {
|
||||
fn new(id: RequestID, query_send: mpsc::UnboundedSender<SendItem>) -> Self {
|
||||
Self { id, query_send }
|
||||
}
|
||||
fn for_stream(self, stream: ByteStream) -> CancelOnDropStream {
|
||||
CancelOnDropStream {
|
||||
cancel: Some(self),
|
||||
stream,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for CancelOnDrop {
|
||||
fn drop(&mut self) {
|
||||
trace!("cancelling request {}", self.id);
|
||||
let _ = self.query_send.send(SendItem::Cancel(self.id));
|
||||
}
|
||||
}
|
||||
|
||||
#[pin_project::pin_project]
|
||||
struct CancelOnDropStream {
|
||||
cancel: Option<CancelOnDrop>,
|
||||
#[pin]
|
||||
stream: ByteStream,
|
||||
}
|
||||
|
||||
impl Stream for CancelOnDropStream {
|
||||
type Item = Packet;
|
||||
|
||||
fn poll_next(
|
||||
self: Pin<&mut Self>,
|
||||
cx: &mut std::task::Context<'_>,
|
||||
) -> Poll<Option<Self::Item>> {
|
||||
let this = self.project();
|
||||
let res = this.stream.poll_next(cx);
|
||||
if matches!(res, Poll::Ready(None)) {
|
||||
if let Some(c) = this.cancel.take() {
|
||||
std::mem::forget(c)
|
||||
}
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||||
self.stream.size_hint()
|
||||
}
|
||||
}
|
271
src/conn.rs
Normal file
271
src/conn.rs
Normal file
|
@ -0,0 +1,271 @@
|
|||
use std::collections::HashMap;
|
||||
use std::net::SocketAddr;
|
||||
use std::sync::atomic::{self, AtomicBool, AtomicU16};
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
use bytes::Bytes;
|
||||
use log::{debug, error, trace};
|
||||
|
||||
use tokio::net::TcpStream;
|
||||
use tokio::sync::{mpsc, oneshot, watch};
|
||||
use tokio_util::compat::*;
|
||||
|
||||
use futures::io::AsyncReadExt;
|
||||
|
||||
use async_trait::async_trait;
|
||||
|
||||
use kuska_handshake::async_std::{handshake_client, handshake_server, BoxStream};
|
||||
|
||||
use crate::error::*;
|
||||
use crate::message::*;
|
||||
use crate::netapp::*;
|
||||
use crate::proto::*;
|
||||
use crate::util::*;
|
||||
|
||||
pub(crate) struct ServerConn {
|
||||
pub(crate) remote_addr: SocketAddr,
|
||||
pub(crate) peer_id: NodeID,
|
||||
|
||||
netapp: Arc<NetApp>,
|
||||
|
||||
resp_send: mpsc::UnboundedSender<Option<(RequestID, RequestPriority, Vec<u8>)>>,
|
||||
close_send: watch::Sender<bool>,
|
||||
}
|
||||
|
||||
impl ServerConn {
|
||||
pub(crate) async fn run(netapp: Arc<NetApp>, socket: TcpStream) -> Result<(), Error> {
|
||||
let remote_addr = socket.peer_addr()?;
|
||||
let mut socket = socket.compat();
|
||||
|
||||
let handshake = handshake_server(
|
||||
&mut socket,
|
||||
netapp.netid.clone(),
|
||||
netapp.id,
|
||||
netapp.privkey.clone(),
|
||||
)
|
||||
.await?;
|
||||
let peer_id = handshake.peer_pk;
|
||||
|
||||
debug!(
|
||||
"Handshake complete (server) with {}@{}",
|
||||
hex::encode(&peer_id),
|
||||
remote_addr
|
||||
);
|
||||
|
||||
let (read, write) = socket.split();
|
||||
|
||||
let (read, write) =
|
||||
BoxStream::from_handshake(read, write, handshake, 0x8000).split_read_write();
|
||||
|
||||
let (resp_send, resp_recv) = mpsc::unbounded_channel();
|
||||
|
||||
let (close_send, close_recv) = watch::channel(false);
|
||||
|
||||
let conn = Arc::new(ServerConn {
|
||||
netapp: netapp.clone(),
|
||||
remote_addr,
|
||||
peer_id,
|
||||
resp_send,
|
||||
close_send,
|
||||
});
|
||||
|
||||
netapp.connected_as_server(peer_id, conn.clone());
|
||||
|
||||
let conn2 = conn.clone();
|
||||
let conn3 = conn.clone();
|
||||
let close_recv2 = close_recv.clone();
|
||||
tokio::try_join!(
|
||||
async move {
|
||||
tokio::select!(
|
||||
r = conn2.recv_loop(read) => r,
|
||||
_ = await_exit(close_recv) => Ok(()),
|
||||
)
|
||||
},
|
||||
async move {
|
||||
tokio::select!(
|
||||
r = conn3.send_loop(resp_recv, write) => r,
|
||||
_ = await_exit(close_recv2) => Ok(()),
|
||||
)
|
||||
},
|
||||
)
|
||||
.map(|_| ())
|
||||
.log_err("ServerConn recv_loop/send_loop");
|
||||
|
||||
netapp.disconnected_as_server(&peer_id, conn);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn close(&self) {
|
||||
self.close_send.send(true).unwrap();
|
||||
}
|
||||
}
|
||||
|
||||
impl SendLoop for ServerConn {}
|
||||
|
||||
#[async_trait]
|
||||
impl RecvLoop for ServerConn {
|
||||
async fn recv_handler(self: Arc<Self>, id: u16, bytes: Vec<u8>) {
|
||||
trace!("ServerConn recv_handler {} ({} bytes)", id, bytes.len());
|
||||
|
||||
let bytes: Bytes = bytes.into();
|
||||
|
||||
let prio = bytes[0];
|
||||
|
||||
let mut kind_bytes = [0u8; 4];
|
||||
kind_bytes.copy_from_slice(&bytes[1..5]);
|
||||
let kind = u32::from_be_bytes(kind_bytes);
|
||||
|
||||
if let Some(handler) = self.netapp.msg_handlers.load().get(&kind) {
|
||||
let net_handler = &handler.net_handler;
|
||||
let resp = net_handler(self.peer_id, bytes.slice(5..)).await;
|
||||
self.resp_send
|
||||
.send(Some((id, prio, resp)))
|
||||
.log_err("ServerConn recv_handler send resp");
|
||||
}
|
||||
}
|
||||
}
|
||||
pub(crate) struct ClientConn {
|
||||
pub(crate) remote_addr: SocketAddr,
|
||||
pub(crate) peer_id: NodeID,
|
||||
|
||||
query_send: mpsc::UnboundedSender<Option<(RequestID, RequestPriority, Vec<u8>)>>,
|
||||
|
||||
next_query_number: AtomicU16,
|
||||
inflight: Mutex<HashMap<RequestID, oneshot::Sender<Vec<u8>>>>,
|
||||
must_exit: AtomicBool,
|
||||
stop_recv_loop: watch::Sender<bool>,
|
||||
}
|
||||
|
||||
impl ClientConn {
|
||||
pub(crate) async fn init(
|
||||
netapp: Arc<NetApp>,
|
||||
socket: TcpStream,
|
||||
peer_id: NodeID,
|
||||
) -> Result<(), Error> {
|
||||
let remote_addr = socket.peer_addr()?;
|
||||
let mut socket = socket.compat();
|
||||
|
||||
let handshake = handshake_client(
|
||||
&mut socket,
|
||||
netapp.netid.clone(),
|
||||
netapp.id,
|
||||
netapp.privkey.clone(),
|
||||
peer_id,
|
||||
)
|
||||
.await?;
|
||||
|
||||
debug!(
|
||||
"Handshake complete (client) with {}@{}",
|
||||
hex::encode(&peer_id),
|
||||
remote_addr
|
||||
);
|
||||
|
||||
let (read, write) = socket.split();
|
||||
|
||||
let (read, write) =
|
||||
BoxStream::from_handshake(read, write, handshake, 0x8000).split_read_write();
|
||||
|
||||
let (query_send, query_recv) = mpsc::unbounded_channel();
|
||||
|
||||
let (stop_recv_loop, stop_recv_loop_recv) = watch::channel(false);
|
||||
|
||||
let conn = Arc::new(ClientConn {
|
||||
remote_addr,
|
||||
peer_id,
|
||||
next_query_number: AtomicU16::from(0u16),
|
||||
query_send,
|
||||
inflight: Mutex::new(HashMap::new()),
|
||||
must_exit: AtomicBool::new(false),
|
||||
stop_recv_loop,
|
||||
});
|
||||
|
||||
netapp.connected_as_client(peer_id, conn.clone());
|
||||
|
||||
tokio::spawn(async move {
|
||||
let conn2 = conn.clone();
|
||||
let conn3 = conn.clone();
|
||||
tokio::try_join!(conn2.send_loop(query_recv, write), async move {
|
||||
tokio::select!(
|
||||
r = conn3.recv_loop(read) => r,
|
||||
_ = await_exit(stop_recv_loop_recv) => Ok(()),
|
||||
)
|
||||
})
|
||||
.map(|_| ())
|
||||
.log_err("ClientConn send_loop/recv_loop/dispatch_loop");
|
||||
|
||||
netapp.disconnected_as_client(&peer_id, conn);
|
||||
});
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn close(&self) {
|
||||
self.must_exit.store(true, atomic::Ordering::SeqCst);
|
||||
self.query_send
|
||||
.send(None)
|
||||
.log_err("could not write None in query_send");
|
||||
if self.inflight.lock().unwrap().is_empty() {
|
||||
self.stop_recv_loop
|
||||
.send(true)
|
||||
.log_err("could not write true to stop_recv_loop");
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) async fn request<T>(
|
||||
self: Arc<Self>,
|
||||
rq: T,
|
||||
prio: RequestPriority,
|
||||
) -> Result<<T as Message>::Response, Error>
|
||||
where
|
||||
T: Message,
|
||||
{
|
||||
let id = self
|
||||
.next_query_number
|
||||
.fetch_add(1u16, atomic::Ordering::Relaxed);
|
||||
let mut bytes = vec![prio];
|
||||
bytes.extend_from_slice(&u32::to_be_bytes(T::KIND)[..]);
|
||||
bytes.extend_from_slice(&rmp_to_vec_all_named(&rq)?[..]);
|
||||
|
||||
let (resp_send, resp_recv) = oneshot::channel();
|
||||
let old = self.inflight.lock().unwrap().insert(id, resp_send);
|
||||
if let Some(old_ch) = old {
|
||||
error!(
|
||||
"Too many inflight requests! RequestID collision. Interrupting previous request."
|
||||
);
|
||||
if old_ch.send(vec![]).is_err() {
|
||||
debug!("Could not send empty response to collisionned request, probably because request was interrupted. Dropping response.");
|
||||
}
|
||||
}
|
||||
|
||||
trace!("request: query_send {}, {} bytes", id, bytes.len());
|
||||
self.query_send.send(Some((id, prio, bytes)))?;
|
||||
|
||||
let resp = resp_recv.await?;
|
||||
|
||||
rmp_serde::decode::from_read_ref::<_, Result<<T as Message>::Response, String>>(&resp[..])?
|
||||
.map_err(Error::Remote)
|
||||
}
|
||||
}
|
||||
|
||||
impl SendLoop for ClientConn {}
|
||||
|
||||
#[async_trait]
|
||||
impl RecvLoop for ClientConn {
|
||||
async fn recv_handler(self: Arc<Self>, id: RequestID, msg: Vec<u8>) {
|
||||
trace!("ClientConn recv_handler {} ({} bytes)", id, msg.len());
|
||||
|
||||
let mut inflight = self.inflight.lock().unwrap();
|
||||
if let Some(ch) = inflight.remove(&id) {
|
||||
if ch.send(msg).is_err() {
|
||||
debug!("Could not send request response, probably because request was interrupted. Dropping response.");
|
||||
}
|
||||
}
|
||||
|
||||
if inflight.is_empty() && self.must_exit.load(atomic::Ordering::SeqCst) {
|
||||
self.stop_recv_loop
|
||||
.send(true)
|
||||
.log_err("could not write true to stop_recv_loop");
|
||||
}
|
||||
}
|
||||
}
|
201
src/endpoint.rs
201
src/endpoint.rs
|
@ -1,201 +0,0 @@
|
|||
use std::marker::PhantomData;
|
||||
use std::sync::Arc;
|
||||
|
||||
use arc_swap::ArcSwapOption;
|
||||
use async_trait::async_trait;
|
||||
|
||||
use crate::error::Error;
|
||||
use crate::message::*;
|
||||
use crate::netapp::*;
|
||||
|
||||
/// This trait should be implemented by an object of your application
|
||||
/// that can handle a message of type `M`, if it wishes to handle
|
||||
/// streams attached to the request and/or to send back streams
|
||||
/// attached to the response..
|
||||
///
|
||||
/// The handler object should be in an Arc, see `Endpoint::set_handler`
|
||||
#[async_trait]
|
||||
pub trait StreamingEndpointHandler<M>: Send + Sync
|
||||
where
|
||||
M: Message,
|
||||
{
|
||||
async fn handle(self: &Arc<Self>, m: Req<M>, from: NodeID) -> Resp<M>;
|
||||
}
|
||||
|
||||
/// If one simply wants to use an endpoint in a client fashion,
|
||||
/// without locally serving requests to that endpoint,
|
||||
/// use the unit type `()` as the handler type:
|
||||
/// it will panic if it is ever made to handle request.
|
||||
#[async_trait]
|
||||
impl<M: Message> EndpointHandler<M> for () {
|
||||
async fn handle(self: &Arc<()>, _m: &M, _from: NodeID) -> M::Response {
|
||||
panic!("This endpoint should not have a local handler.");
|
||||
}
|
||||
}
|
||||
|
||||
// ----
|
||||
|
||||
/// This trait should be implemented by an object of your application
|
||||
/// that can handle a message of type `M`, in the cases where it doesn't
|
||||
/// care about attached stream in the request nor in the response.
|
||||
#[async_trait]
|
||||
pub trait EndpointHandler<M>: Send + Sync
|
||||
where
|
||||
M: Message,
|
||||
{
|
||||
async fn handle(self: &Arc<Self>, m: &M, from: NodeID) -> M::Response;
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
impl<T, M> StreamingEndpointHandler<M> for T
|
||||
where
|
||||
T: EndpointHandler<M>,
|
||||
M: Message,
|
||||
{
|
||||
async fn handle(self: &Arc<Self>, mut m: Req<M>, from: NodeID) -> Resp<M> {
|
||||
// Immediately drop stream to ignore all data that comes in,
|
||||
// instead of buffering it indefinitely
|
||||
drop(m.take_stream());
|
||||
Resp::new(EndpointHandler::handle(self, m.msg(), from).await)
|
||||
}
|
||||
}
|
||||
|
||||
// ----
|
||||
|
||||
/// This struct represents an endpoint for message of type `M`.
|
||||
///
|
||||
/// Creating a new endpoint is done by calling `NetApp::endpoint`.
|
||||
/// An endpoint is identified primarily by its path, which is specified
|
||||
/// at creation time.
|
||||
///
|
||||
/// An `Endpoint` is used both to send requests to remote nodes,
|
||||
/// and to specify the handler for such requests on the local node.
|
||||
/// The type `H` represents the type of the handler object for
|
||||
/// endpoint messages (see `StreamingEndpointHandler`).
|
||||
pub struct Endpoint<M, H>
|
||||
where
|
||||
M: Message,
|
||||
H: StreamingEndpointHandler<M>,
|
||||
{
|
||||
_phantom: PhantomData<M>,
|
||||
netapp: Arc<NetApp>,
|
||||
path: String,
|
||||
handler: ArcSwapOption<H>,
|
||||
}
|
||||
|
||||
impl<M, H> Endpoint<M, H>
|
||||
where
|
||||
M: Message,
|
||||
H: StreamingEndpointHandler<M>,
|
||||
{
|
||||
pub(crate) fn new(netapp: Arc<NetApp>, path: String) -> Self {
|
||||
Self {
|
||||
_phantom: PhantomData::default(),
|
||||
netapp,
|
||||
path,
|
||||
handler: ArcSwapOption::from(None),
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the path of this endpoint
|
||||
pub fn path(&self) -> &str {
|
||||
&self.path
|
||||
}
|
||||
|
||||
/// Set the object that is responsible of handling requests to
|
||||
/// this endpoint on the local node.
|
||||
pub fn set_handler(&self, h: Arc<H>) {
|
||||
self.handler.swap(Some(h));
|
||||
}
|
||||
|
||||
/// Call this endpoint on a remote node (or on the local node,
|
||||
/// for that matter). This function invokes the full version that
|
||||
/// allows to attach a stream to the request and to
|
||||
/// receive such a stream attached to the response.
|
||||
pub async fn call_streaming<T>(
|
||||
&self,
|
||||
target: &NodeID,
|
||||
req: T,
|
||||
prio: RequestPriority,
|
||||
) -> Result<Resp<M>, Error>
|
||||
where
|
||||
T: IntoReq<M>,
|
||||
{
|
||||
if *target == self.netapp.id {
|
||||
match self.handler.load_full() {
|
||||
None => Err(Error::NoHandler),
|
||||
Some(h) => Ok(h.handle(req.into_req_local(), self.netapp.id).await),
|
||||
}
|
||||
} else {
|
||||
let conn = self
|
||||
.netapp
|
||||
.client_conns
|
||||
.read()
|
||||
.unwrap()
|
||||
.get(target)
|
||||
.cloned();
|
||||
match conn {
|
||||
None => Err(Error::Message(format!(
|
||||
"Not connected: {}",
|
||||
hex::encode(&target[..8])
|
||||
))),
|
||||
Some(c) => c.call(req.into_req()?, self.path.as_str(), prio).await,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Call this endpoint on a remote node. This function is the simplified
|
||||
/// version that doesn't allow to have streams attached to the request
|
||||
/// or the response; see `call_streaming` for the full version.
|
||||
pub async fn call(
|
||||
&self,
|
||||
target: &NodeID,
|
||||
req: M,
|
||||
prio: RequestPriority,
|
||||
) -> Result<<M as Message>::Response, Error> {
|
||||
Ok(self.call_streaming(target, req, prio).await?.into_msg())
|
||||
}
|
||||
}
|
||||
|
||||
// ---- Internal stuff ----
|
||||
|
||||
pub(crate) type DynEndpoint = Box<dyn GenericEndpoint + Send + Sync>;
|
||||
|
||||
#[async_trait]
|
||||
pub(crate) trait GenericEndpoint {
|
||||
async fn handle(&self, req_enc: ReqEnc, from: NodeID) -> Result<RespEnc, Error>;
|
||||
fn drop_handler(&self);
|
||||
fn clone_endpoint(&self) -> DynEndpoint;
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub(crate) struct EndpointArc<M, H>(pub(crate) Arc<Endpoint<M, H>>)
|
||||
where
|
||||
M: Message,
|
||||
H: StreamingEndpointHandler<M>;
|
||||
|
||||
#[async_trait]
|
||||
impl<M, H> GenericEndpoint for EndpointArc<M, H>
|
||||
where
|
||||
M: Message,
|
||||
H: StreamingEndpointHandler<M> + 'static,
|
||||
{
|
||||
async fn handle(&self, req_enc: ReqEnc, from: NodeID) -> Result<RespEnc, Error> {
|
||||
match self.0.handler.load_full() {
|
||||
None => Err(Error::NoHandler),
|
||||
Some(h) => {
|
||||
let req = Req::from_enc(req_enc)?;
|
||||
let res = h.handle(req, from).await;
|
||||
Ok(res.into_enc()?)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn drop_handler(&self) {
|
||||
self.0.handler.swap(None);
|
||||
}
|
||||
|
||||
fn clone_endpoint(&self) -> DynEndpoint {
|
||||
Box::new(Self(self.0.clone()))
|
||||
}
|
||||
}
|
73
src/error.rs
73
src/error.rs
|
@ -1,6 +1,6 @@
|
|||
use err_derive::Error;
|
||||
use std::io;
|
||||
|
||||
use err_derive::Error;
|
||||
use log::error;
|
||||
|
||||
#[derive(Debug, Error)]
|
||||
|
@ -22,29 +22,11 @@ pub enum Error {
|
|||
#[error(display = "Handshake error: {}", _0)]
|
||||
Handshake(#[error(source)] kuska_handshake::async_std::Error),
|
||||
|
||||
#[error(display = "UTF8 error: {}", _0)]
|
||||
UTF8(#[error(source)] std::string::FromUtf8Error),
|
||||
|
||||
#[error(display = "Framing protocol error")]
|
||||
Framing,
|
||||
|
||||
#[error(display = "Remote error ({:?}): {}", _0, _1)]
|
||||
Remote(io::ErrorKind, String),
|
||||
|
||||
#[error(display = "Request ID collision")]
|
||||
IdCollision,
|
||||
|
||||
#[error(display = "{}", _0)]
|
||||
Message(String),
|
||||
|
||||
#[error(display = "No handler / shutting down")]
|
||||
NoHandler,
|
||||
|
||||
#[error(display = "Connection closed")]
|
||||
ConnectionClosed,
|
||||
|
||||
#[error(display = "Version mismatch: {}", _0)]
|
||||
VersionMismatch(String),
|
||||
#[error(display = "Remote error: {}", _0)]
|
||||
Remote(String),
|
||||
}
|
||||
|
||||
impl<T> From<tokio::sync::watch::error::SendError<T>> for Error {
|
||||
|
@ -75,52 +57,3 @@ where
|
|||
};
|
||||
}
|
||||
}
|
||||
|
||||
impl<E, T> LogError for Result<T, E>
|
||||
where
|
||||
T: LogError,
|
||||
E: Into<Error>,
|
||||
{
|
||||
fn log_err(self, msg: &'static str) {
|
||||
match self {
|
||||
Err(e) => error!("Error: {}: {}", msg, Into::<Error>::into(e)),
|
||||
Ok(x) => x.log_err(msg),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ---- Helpers for serializing I/O Errors
|
||||
|
||||
pub(crate) fn u8_to_io_errorkind(v: u8) -> std::io::ErrorKind {
|
||||
use std::io::ErrorKind;
|
||||
match v {
|
||||
101 => ErrorKind::ConnectionAborted,
|
||||
102 => ErrorKind::BrokenPipe,
|
||||
103 => ErrorKind::WouldBlock,
|
||||
104 => ErrorKind::InvalidInput,
|
||||
105 => ErrorKind::InvalidData,
|
||||
106 => ErrorKind::TimedOut,
|
||||
107 => ErrorKind::Interrupted,
|
||||
108 => ErrorKind::UnexpectedEof,
|
||||
109 => ErrorKind::OutOfMemory,
|
||||
110 => ErrorKind::ConnectionReset,
|
||||
_ => ErrorKind::Other,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn io_errorkind_to_u8(kind: std::io::ErrorKind) -> u8 {
|
||||
use std::io::ErrorKind;
|
||||
match kind {
|
||||
ErrorKind::ConnectionAborted => 101,
|
||||
ErrorKind::BrokenPipe => 102,
|
||||
ErrorKind::WouldBlock => 103,
|
||||
ErrorKind::InvalidInput => 104,
|
||||
ErrorKind::InvalidData => 105,
|
||||
ErrorKind::TimedOut => 106,
|
||||
ErrorKind::Interrupted => 107,
|
||||
ErrorKind::UnexpectedEof => 108,
|
||||
ErrorKind::OutOfMemory => 109,
|
||||
ErrorKind::ConnectionReset => 110,
|
||||
_ => 100,
|
||||
}
|
||||
}
|
||||
|
|
15
src/lib.rs
15
src/lib.rs
|
@ -13,23 +13,16 @@
|
|||
//! about message priorization.
|
||||
//! Also check out the examples to learn how to use this crate.
|
||||
|
||||
pub mod bytes_buf;
|
||||
pub mod error;
|
||||
pub mod stream;
|
||||
pub mod util;
|
||||
|
||||
pub mod endpoint;
|
||||
pub mod message;
|
||||
pub mod proto;
|
||||
|
||||
mod client;
|
||||
mod recv;
|
||||
mod send;
|
||||
mod server;
|
||||
mod conn;
|
||||
|
||||
pub mod netapp;
|
||||
pub mod peering;
|
||||
|
||||
pub use crate::netapp::*;
|
||||
|
||||
#[cfg(test)]
|
||||
mod test;
|
||||
pub use netapp::*;
|
||||
pub use util::NodeID;
|
||||
|
|
538
src/message.rs
538
src/message.rs
|
@ -1,522 +1,36 @@
|
|||
use std::fmt;
|
||||
use std::marker::PhantomData;
|
||||
use std::sync::Arc;
|
||||
use std::net::IpAddr;
|
||||
|
||||
use bytes::{BufMut, Bytes, BytesMut};
|
||||
use rand::prelude::*;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use futures::stream::StreamExt;
|
||||
|
||||
use crate::error::*;
|
||||
use crate::stream::*;
|
||||
use crate::util::*;
|
||||
|
||||
/// Priority of a request (click to read more about priorities).
|
||||
///
|
||||
/// This priority value is used to priorize messages
|
||||
/// in the send queue of the client, and their responses in the send queue of the
|
||||
/// server. Lower values mean higher priority.
|
||||
///
|
||||
/// This mechanism is usefull for messages bigger than the maximum chunk size
|
||||
/// (set at `0x4000` bytes), such as large file transfers.
|
||||
/// In such case, all of the messages in the send queue with the highest priority
|
||||
/// will take turns to send individual chunks, in a round-robin fashion.
|
||||
/// Once all highest priority messages are sent successfully, the messages with
|
||||
/// the next highest priority will begin being sent in the same way.
|
||||
///
|
||||
/// The same priority value is given to a request and to its associated response.
|
||||
pub type RequestPriority = u8;
|
||||
|
||||
/// Priority class: high
|
||||
pub const PRIO_HIGH: RequestPriority = 0x20;
|
||||
/// Priority class: normal
|
||||
pub const PRIO_NORMAL: RequestPriority = 0x40;
|
||||
/// Priority class: background
|
||||
pub const PRIO_BACKGROUND: RequestPriority = 0x80;
|
||||
/// Priority: primary among given class
|
||||
pub const PRIO_PRIMARY: RequestPriority = 0x00;
|
||||
/// Priority: secondary among given class (ex: `PRIO_HIGH | PRIO_SECONDARY`)
|
||||
pub const PRIO_SECONDARY: RequestPriority = 0x01;
|
||||
|
||||
// ----
|
||||
|
||||
/// An order tag can be added to a message or a response to indicate
|
||||
/// whether it should be sent after or before other messages with order tags
|
||||
/// referencing a same stream
|
||||
#[derive(Clone, Copy, Serialize, Deserialize, Debug)]
|
||||
pub struct OrderTag(pub(crate) u64, pub(crate) u64);
|
||||
|
||||
/// A stream is an opaque identifier that defines a set of messages
|
||||
/// or responses that are ordered wrt one another using to order tags.
|
||||
#[derive(Clone, Copy)]
|
||||
pub struct OrderTagStream(u64);
|
||||
|
||||
impl OrderTag {
|
||||
/// Create a new stream from which to generate order tags. Example:
|
||||
/// ```ignore
|
||||
/// let stream = OrderTag.stream();
|
||||
/// let tag_1 = stream.order(1);
|
||||
/// let tag_2 = stream.order(2);
|
||||
/// ```
|
||||
pub fn stream() -> OrderTagStream {
|
||||
OrderTagStream(thread_rng().gen())
|
||||
}
|
||||
}
|
||||
impl OrderTagStream {
|
||||
/// Create the order tag for message `order` in this stream
|
||||
pub fn order(&self, order: u64) -> OrderTag {
|
||||
OrderTag(self.0, order)
|
||||
}
|
||||
}
|
||||
|
||||
// ----
|
||||
pub type MessageKind = u32;
|
||||
|
||||
/// This trait should be implemented by all messages your application
|
||||
/// wants to handle. It specifies which data type should be sent
|
||||
/// as a response to this message in the RPC protocol.
|
||||
pub trait Message: Serialize + for<'de> Deserialize<'de> + Send + Sync + 'static {
|
||||
/// The type of the response that is sent in response to this message
|
||||
type Response: Serialize + for<'de> Deserialize<'de> + Send + Sync + 'static;
|
||||
/// wants to handle (click to read more).
|
||||
///
|
||||
/// It defines a `KIND`, which should be a **unique**
|
||||
/// `u32` that distinguishes these messages from other types of messages
|
||||
/// (it is used by our communication protocol), as well as an associated
|
||||
/// `Response` type that defines the type of the response that is given
|
||||
/// to the message. It is your responsibility to ensure that `KIND` is a
|
||||
/// unique `u32` that is not used by any other protocol messages.
|
||||
/// All `KIND` values of the form `0x42xxxxxx` are reserved by the netapp
|
||||
/// crate for internal purposes.
|
||||
///
|
||||
/// A handler for this message has type `Self -> Self::Response`.
|
||||
/// If you need to return an error, the `Response` type should be
|
||||
/// a `Result<_, _>`.
|
||||
pub trait Message: Serialize + for<'de> Deserialize<'de> + Send + Sync {
|
||||
const KIND: MessageKind;
|
||||
type Response: Serialize + for<'de> Deserialize<'de> + Send + Sync;
|
||||
}
|
||||
|
||||
// ----
|
||||
|
||||
/// The Req<M> is a helper object used to create requests and attach them
|
||||
/// a stream of data. If the stream is a fixed Bytes and not a ByteStream,
|
||||
/// Req<M> is cheaply clonable to allow the request to be sent to different
|
||||
/// peers (Clone will panic if the stream is a ByteStream).
|
||||
pub struct Req<M: Message> {
|
||||
pub(crate) msg: Arc<M>,
|
||||
pub(crate) msg_ser: Option<Bytes>,
|
||||
pub(crate) stream: AttachedStream,
|
||||
pub(crate) order_tag: Option<OrderTag>,
|
||||
#[derive(Serialize, Deserialize)]
|
||||
pub(crate) struct HelloMessage {
|
||||
pub server_addr: Option<IpAddr>,
|
||||
pub server_port: u16,
|
||||
}
|
||||
|
||||
impl<M: Message> Req<M> {
|
||||
/// Creates a new request from a base message `M`
|
||||
pub fn new(v: M) -> Result<Self, Error> {
|
||||
Ok(v.into_req()?)
|
||||
}
|
||||
|
||||
/// Attach a stream to message in request, where the stream is streamed
|
||||
/// from a fixed `Bytes` buffer
|
||||
pub fn with_stream_from_buffer(self, b: Bytes) -> Self {
|
||||
Self {
|
||||
stream: AttachedStream::Fixed(b),
|
||||
..self
|
||||
}
|
||||
}
|
||||
|
||||
/// Attach a stream to message in request, where the stream is
|
||||
/// an instance of `ByteStream`. Note than when a `Req<M>` has an attached
|
||||
/// stream which is a `ByteStream` instance, it can no longer be cloned
|
||||
/// to be sent to different nodes (`.clone()` will panic)
|
||||
pub fn with_stream(self, b: ByteStream) -> Self {
|
||||
Self {
|
||||
stream: AttachedStream::Stream(b),
|
||||
..self
|
||||
}
|
||||
}
|
||||
|
||||
/// Add an order tag to this request to indicate in which order it should
|
||||
/// be sent.
|
||||
pub fn with_order_tag(self, order_tag: OrderTag) -> Self {
|
||||
Self {
|
||||
order_tag: Some(order_tag),
|
||||
..self
|
||||
}
|
||||
}
|
||||
|
||||
/// Get a reference to the message `M` contained in this request
|
||||
pub fn msg(&self) -> &M {
|
||||
&self.msg
|
||||
}
|
||||
|
||||
/// Takes out the stream attached to this request, if any
|
||||
pub fn take_stream(&mut self) -> Option<ByteStream> {
|
||||
std::mem::replace(&mut self.stream, AttachedStream::None).into_stream()
|
||||
}
|
||||
|
||||
pub(crate) fn into_enc(
|
||||
self,
|
||||
prio: RequestPriority,
|
||||
path: Bytes,
|
||||
telemetry_id: Bytes,
|
||||
) -> ReqEnc {
|
||||
ReqEnc {
|
||||
prio,
|
||||
path,
|
||||
telemetry_id,
|
||||
msg: self.msg_ser.unwrap(),
|
||||
stream: self.stream.into_stream(),
|
||||
order_tag: self.order_tag,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn from_enc(enc: ReqEnc) -> Result<Self, rmp_serde::decode::Error> {
|
||||
let msg = rmp_serde::decode::from_read_ref(&enc.msg)?;
|
||||
Ok(Req {
|
||||
msg: Arc::new(msg),
|
||||
msg_ser: Some(enc.msg),
|
||||
stream: enc
|
||||
.stream
|
||||
.map(AttachedStream::Stream)
|
||||
.unwrap_or(AttachedStream::None),
|
||||
order_tag: enc.order_tag,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// `IntoReq<M>` represents any object that can be transformed into `Req<M>`
|
||||
pub trait IntoReq<M: Message> {
|
||||
/// Transform the object into a `Req<M>`, serializing the message M
|
||||
/// to be sent to remote nodes
|
||||
fn into_req(self) -> Result<Req<M>, rmp_serde::encode::Error>;
|
||||
/// Transform the object into a `Req<M>`, skipping the serialization
|
||||
/// of message M, in the case we are not sending this RPC message to
|
||||
/// a remote node
|
||||
fn into_req_local(self) -> Req<M>;
|
||||
}
|
||||
|
||||
impl<M: Message> IntoReq<M> for M {
|
||||
fn into_req(self) -> Result<Req<M>, rmp_serde::encode::Error> {
|
||||
let msg_ser = rmp_to_vec_all_named(&self)?;
|
||||
Ok(Req {
|
||||
msg: Arc::new(self),
|
||||
msg_ser: Some(Bytes::from(msg_ser)),
|
||||
stream: AttachedStream::None,
|
||||
order_tag: None,
|
||||
})
|
||||
}
|
||||
fn into_req_local(self) -> Req<M> {
|
||||
Req {
|
||||
msg: Arc::new(self),
|
||||
msg_ser: None,
|
||||
stream: AttachedStream::None,
|
||||
order_tag: None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<M: Message> IntoReq<M> for Req<M> {
|
||||
fn into_req(self) -> Result<Req<M>, rmp_serde::encode::Error> {
|
||||
Ok(self)
|
||||
}
|
||||
fn into_req_local(self) -> Req<M> {
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
impl<M: Message> Clone for Req<M> {
|
||||
fn clone(&self) -> Self {
|
||||
let stream = match &self.stream {
|
||||
AttachedStream::None => AttachedStream::None,
|
||||
AttachedStream::Fixed(b) => AttachedStream::Fixed(b.clone()),
|
||||
AttachedStream::Stream(_) => {
|
||||
panic!("Cannot clone a Req<_> with a non-buffer attached stream")
|
||||
}
|
||||
};
|
||||
Self {
|
||||
msg: self.msg.clone(),
|
||||
msg_ser: self.msg_ser.clone(),
|
||||
stream,
|
||||
order_tag: self.order_tag,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<M> fmt::Debug for Req<M>
|
||||
where
|
||||
M: Message + fmt::Debug,
|
||||
{
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
|
||||
write!(f, "Req[{:?}", self.msg)?;
|
||||
match &self.stream {
|
||||
AttachedStream::None => write!(f, "]"),
|
||||
AttachedStream::Fixed(b) => write!(f, "; stream=buf:{}]", b.len()),
|
||||
AttachedStream::Stream(_) => write!(f, "; stream]"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ----
|
||||
|
||||
/// The Resp<M> represents a full response from a RPC that may have
|
||||
/// an attached stream.
|
||||
pub struct Resp<M: Message> {
|
||||
pub(crate) _phantom: PhantomData<M>,
|
||||
pub(crate) msg: M::Response,
|
||||
pub(crate) stream: AttachedStream,
|
||||
pub(crate) order_tag: Option<OrderTag>,
|
||||
}
|
||||
|
||||
impl<M: Message> Resp<M> {
|
||||
/// Creates a new response from a base response message
|
||||
pub fn new(v: M::Response) -> Self {
|
||||
Resp {
|
||||
_phantom: Default::default(),
|
||||
msg: v,
|
||||
stream: AttachedStream::None,
|
||||
order_tag: None,
|
||||
}
|
||||
}
|
||||
|
||||
/// Attach a stream to message in response, where the stream is streamed
|
||||
/// from a fixed `Bytes` buffer
|
||||
pub fn with_stream_from_buffer(self, b: Bytes) -> Self {
|
||||
Self {
|
||||
stream: AttachedStream::Fixed(b),
|
||||
..self
|
||||
}
|
||||
}
|
||||
|
||||
/// Attach a stream to message in response, where the stream is
|
||||
/// an instance of `ByteStream`.
|
||||
pub fn with_stream(self, b: ByteStream) -> Self {
|
||||
Self {
|
||||
stream: AttachedStream::Stream(b),
|
||||
..self
|
||||
}
|
||||
}
|
||||
|
||||
/// Add an order tag to this response to indicate in which order it should
|
||||
/// be sent.
|
||||
pub fn with_order_tag(self, order_tag: OrderTag) -> Self {
|
||||
Self {
|
||||
order_tag: Some(order_tag),
|
||||
..self
|
||||
}
|
||||
}
|
||||
|
||||
/// Get a reference to the response message contained in this request
|
||||
pub fn msg(&self) -> &M::Response {
|
||||
&self.msg
|
||||
}
|
||||
|
||||
/// Transforms the `Resp<M>` into the response message it contains,
|
||||
/// dropping everything else (including attached data stream)
|
||||
pub fn into_msg(self) -> M::Response {
|
||||
self.msg
|
||||
}
|
||||
|
||||
/// Transforms the `Resp<M>` into, on the one side, the response message
|
||||
/// it contains, and on the other side, the associated data stream
|
||||
/// if it exists
|
||||
pub fn into_parts(self) -> (M::Response, Option<ByteStream>) {
|
||||
(self.msg, self.stream.into_stream())
|
||||
}
|
||||
|
||||
pub(crate) fn into_enc(self) -> Result<RespEnc, rmp_serde::encode::Error> {
|
||||
Ok(RespEnc {
|
||||
msg: rmp_to_vec_all_named(&self.msg)?.into(),
|
||||
stream: self.stream.into_stream(),
|
||||
order_tag: self.order_tag,
|
||||
})
|
||||
}
|
||||
|
||||
pub(crate) fn from_enc(enc: RespEnc) -> Result<Self, Error> {
|
||||
let msg = rmp_serde::decode::from_read_ref(&enc.msg)?;
|
||||
Ok(Self {
|
||||
_phantom: Default::default(),
|
||||
msg,
|
||||
stream: enc
|
||||
.stream
|
||||
.map(AttachedStream::Stream)
|
||||
.unwrap_or(AttachedStream::None),
|
||||
order_tag: enc.order_tag,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<M> fmt::Debug for Resp<M>
|
||||
where
|
||||
M: Message,
|
||||
<M as Message>::Response: fmt::Debug,
|
||||
{
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
|
||||
write!(f, "Resp[{:?}", self.msg)?;
|
||||
match &self.stream {
|
||||
AttachedStream::None => write!(f, "]"),
|
||||
AttachedStream::Fixed(b) => write!(f, "; stream=buf:{}]", b.len()),
|
||||
AttachedStream::Stream(_) => write!(f, "; stream]"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ----
|
||||
|
||||
pub(crate) enum AttachedStream {
|
||||
None,
|
||||
Fixed(Bytes),
|
||||
Stream(ByteStream),
|
||||
}
|
||||
|
||||
impl AttachedStream {
|
||||
pub fn into_stream(self) -> Option<ByteStream> {
|
||||
match self {
|
||||
AttachedStream::None => None,
|
||||
AttachedStream::Fixed(b) => Some(Box::pin(futures::stream::once(async move { Ok(b) }))),
|
||||
AttachedStream::Stream(s) => Some(s),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ---- ----
|
||||
|
||||
/// Encoding for requests into a ByteStream:
|
||||
/// - priority: u8
|
||||
/// - path length: u8
|
||||
/// - path: [u8; path length]
|
||||
/// - telemetry id length: u8
|
||||
/// - telemetry id: [u8; telemetry id length]
|
||||
/// - msg len: u32
|
||||
/// - msg [u8; ..]
|
||||
/// - the attached stream as the rest of the encoded stream
|
||||
pub(crate) struct ReqEnc {
|
||||
pub(crate) prio: RequestPriority,
|
||||
pub(crate) path: Bytes,
|
||||
pub(crate) telemetry_id: Bytes,
|
||||
pub(crate) msg: Bytes,
|
||||
pub(crate) stream: Option<ByteStream>,
|
||||
pub(crate) order_tag: Option<OrderTag>,
|
||||
}
|
||||
|
||||
impl ReqEnc {
|
||||
pub(crate) fn encode(self) -> (ByteStream, Option<OrderTag>) {
|
||||
let mut buf = BytesMut::with_capacity(
|
||||
self.path.len() + self.telemetry_id.len() + self.msg.len() + 16,
|
||||
);
|
||||
|
||||
buf.put_u8(self.prio);
|
||||
|
||||
buf.put_u8(self.path.len() as u8);
|
||||
buf.put(self.path);
|
||||
|
||||
buf.put_u8(self.telemetry_id.len() as u8);
|
||||
buf.put(&self.telemetry_id[..]);
|
||||
|
||||
buf.put_u32(self.msg.len() as u32);
|
||||
|
||||
let header = buf.freeze();
|
||||
|
||||
let res_stream: ByteStream = if let Some(stream) = self.stream {
|
||||
Box::pin(futures::stream::iter([Ok(header), Ok(self.msg)]).chain(stream))
|
||||
} else {
|
||||
Box::pin(futures::stream::iter([Ok(header), Ok(self.msg)]))
|
||||
};
|
||||
(res_stream, self.order_tag)
|
||||
}
|
||||
|
||||
pub(crate) async fn decode(stream: ByteStream) -> Result<Self, Error> {
|
||||
Self::decode_aux(stream)
|
||||
.await
|
||||
.map_err(read_exact_error_to_error)
|
||||
}
|
||||
|
||||
async fn decode_aux(stream: ByteStream) -> Result<Self, ReadExactError> {
|
||||
let mut reader = ByteStreamReader::new(stream);
|
||||
|
||||
let prio = reader.read_u8().await?;
|
||||
|
||||
let path_len = reader.read_u8().await?;
|
||||
let path = reader.read_exact(path_len as usize).await?;
|
||||
|
||||
let telemetry_id_len = reader.read_u8().await?;
|
||||
let telemetry_id = reader.read_exact(telemetry_id_len as usize).await?;
|
||||
|
||||
let msg_len = reader.read_u32().await?;
|
||||
let msg = reader.read_exact(msg_len as usize).await?;
|
||||
|
||||
Ok(Self {
|
||||
prio,
|
||||
path,
|
||||
telemetry_id,
|
||||
msg,
|
||||
stream: Some(reader.into_stream()),
|
||||
order_tag: None,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Encoding for responses into a ByteStream:
|
||||
/// IF SUCCESS:
|
||||
/// - 0: u8
|
||||
/// - msg len: u32
|
||||
/// - msg [u8; ..]
|
||||
/// - the attached stream as the rest of the encoded stream
|
||||
/// IF ERROR:
|
||||
/// - message length + 1: u8
|
||||
/// - error code: u8
|
||||
/// - message: [u8; message_length]
|
||||
pub(crate) struct RespEnc {
|
||||
msg: Bytes,
|
||||
stream: Option<ByteStream>,
|
||||
order_tag: Option<OrderTag>,
|
||||
}
|
||||
|
||||
impl RespEnc {
|
||||
pub(crate) fn encode(resp: Result<Self, Error>) -> (ByteStream, Option<OrderTag>) {
|
||||
match resp {
|
||||
Ok(Self {
|
||||
msg,
|
||||
stream,
|
||||
order_tag,
|
||||
}) => {
|
||||
let mut buf = BytesMut::with_capacity(4);
|
||||
buf.put_u32(msg.len() as u32);
|
||||
let header = buf.freeze();
|
||||
|
||||
let res_stream: ByteStream = if let Some(stream) = stream {
|
||||
Box::pin(futures::stream::iter([Ok(header), Ok(msg)]).chain(stream))
|
||||
} else {
|
||||
Box::pin(futures::stream::iter([Ok(header), Ok(msg)]))
|
||||
};
|
||||
(res_stream, order_tag)
|
||||
}
|
||||
Err(err) => {
|
||||
let err = std::io::Error::new(
|
||||
std::io::ErrorKind::Other,
|
||||
format!("netapp error: {}", err),
|
||||
);
|
||||
(
|
||||
Box::pin(futures::stream::once(async move { Err(err) })),
|
||||
None,
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) async fn decode(stream: ByteStream) -> Result<Self, Error> {
|
||||
Self::decode_aux(stream)
|
||||
.await
|
||||
.map_err(read_exact_error_to_error)
|
||||
}
|
||||
|
||||
async fn decode_aux(stream: ByteStream) -> Result<Self, ReadExactError> {
|
||||
let mut reader = ByteStreamReader::new(stream);
|
||||
|
||||
let msg_len = reader.read_u32().await?;
|
||||
let msg = reader.read_exact(msg_len as usize).await?;
|
||||
|
||||
// Check whether the response stream still has data or not.
|
||||
// If no more data is coming, this will defuse the request canceller.
|
||||
// If we didn't do this, and the client doesn't try to read from the stream,
|
||||
// the request canceller doesn't know that we read everything and
|
||||
// sends a cancellation message to the server (which they don't care about).
|
||||
reader.fill_buffer().await;
|
||||
|
||||
Ok(Self {
|
||||
msg,
|
||||
stream: Some(reader.into_stream()),
|
||||
order_tag: None,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn read_exact_error_to_error(e: ReadExactError) -> Error {
|
||||
match e {
|
||||
ReadExactError::Stream(err) => Error::Remote(err.kind(), err.to_string()),
|
||||
ReadExactError::UnexpectedEos => Error::Framing,
|
||||
}
|
||||
impl Message for HelloMessage {
|
||||
const KIND: MessageKind = 0x42000001;
|
||||
type Response = ();
|
||||
}
|
||||
|
|
370
src/netapp.rs
370
src/netapp.rs
|
@ -1,58 +1,49 @@
|
|||
use std::any::Any;
|
||||
use std::collections::HashMap;
|
||||
use std::net::{IpAddr, SocketAddr};
|
||||
use std::pin::Pin;
|
||||
use std::sync::{Arc, RwLock};
|
||||
use std::time::Instant;
|
||||
|
||||
use log::{debug, error, info, trace, warn};
|
||||
use std::future::Future;
|
||||
|
||||
use arc_swap::ArcSwapOption;
|
||||
use async_trait::async_trait;
|
||||
use log::{debug, info};
|
||||
|
||||
use arc_swap::{ArcSwap, ArcSwapOption};
|
||||
use bytes::Bytes;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
use sodiumoxide::crypto::auth;
|
||||
use sodiumoxide::crypto::sign::ed25519;
|
||||
|
||||
use futures::stream::futures_unordered::FuturesUnordered;
|
||||
use futures::stream::StreamExt;
|
||||
use tokio::net::{TcpListener, TcpStream};
|
||||
use tokio::select;
|
||||
use tokio::sync::{mpsc, watch};
|
||||
|
||||
use crate::client::*;
|
||||
use crate::endpoint::*;
|
||||
use crate::conn::*;
|
||||
use crate::error::*;
|
||||
use crate::message::*;
|
||||
use crate::server::*;
|
||||
use crate::proto::*;
|
||||
use crate::util::*;
|
||||
|
||||
/// A node's identifier, which is also its public cryptographic key
|
||||
pub type NodeID = sodiumoxide::crypto::sign::ed25519::PublicKey;
|
||||
/// A node's secret key
|
||||
pub type NodeKey = sodiumoxide::crypto::sign::ed25519::SecretKey;
|
||||
/// A network key
|
||||
pub type NetworkKey = sodiumoxide::crypto::auth::Key;
|
||||
|
||||
/// Tag which is exchanged between client and server upon connection establishment
|
||||
/// to check that they are running compatible versions of Netapp,
|
||||
/// composed of 8 bytes for Netapp version and 8 bytes for client version
|
||||
pub(crate) type VersionTag = [u8; 16];
|
||||
|
||||
/// Value of the Netapp version used in the version tag
|
||||
pub(crate) const NETAPP_VERSION_TAG: u64 = 0x6e65746170700005; // netapp 0x0005
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
pub(crate) struct HelloMessage {
|
||||
pub server_addr: Option<IpAddr>,
|
||||
pub server_port: u16,
|
||||
}
|
||||
|
||||
impl Message for HelloMessage {
|
||||
type Response = ();
|
||||
}
|
||||
type DynMsg = Box<dyn Any + Send + Sync + 'static>;
|
||||
|
||||
type OnConnectHandler = Box<dyn Fn(NodeID, SocketAddr, bool) + Send + Sync>;
|
||||
type OnDisconnectHandler = Box<dyn Fn(NodeID, bool) + Send + Sync>;
|
||||
|
||||
pub(crate) type LocalHandler =
|
||||
Box<dyn Fn(DynMsg) -> Pin<Box<dyn Future<Output = DynMsg> + Sync + Send>> + Sync + Send>;
|
||||
pub(crate) type NetHandler = Box<
|
||||
dyn Fn(NodeID, Bytes) -> Pin<Box<dyn Future<Output = Vec<u8>> + Sync + Send>> + Sync + Send,
|
||||
>;
|
||||
|
||||
pub(crate) struct Handler {
|
||||
pub(crate) local_handler: LocalHandler,
|
||||
pub(crate) net_handler: NetHandler,
|
||||
}
|
||||
|
||||
/// NetApp is the main class that handles incoming and outgoing connections.
|
||||
///
|
||||
/// The `request()` method can be used to send a message to any peer to which we have
|
||||
/// an outgoing connection, or to ourself. On the server side, these messages are
|
||||
/// processed by the handlers that have been defined using `add_msg_handler()`.
|
||||
///
|
||||
/// NetApp can be used in a stand-alone fashion or together with a peering strategy.
|
||||
/// If using it alone, you will want to set `on_connect` and `on_disconnect` events
|
||||
/// in order to manage information about the current peer list.
|
||||
|
@ -62,8 +53,6 @@ type OnDisconnectHandler = Box<dyn Fn(NodeID, bool) + Send + Sync>;
|
|||
pub struct NetApp {
|
||||
listen_params: ArcSwapOption<ListenParams>,
|
||||
|
||||
/// Version tag, 8 bytes for netapp version, 8 bytes for app version
|
||||
pub version_tag: VersionTag,
|
||||
/// Network secret key
|
||||
pub netid: auth::Key,
|
||||
/// Our peer ID
|
||||
|
@ -71,12 +60,10 @@ pub struct NetApp {
|
|||
/// Private key associated with our peer ID
|
||||
pub privkey: ed25519::SecretKey,
|
||||
|
||||
pub(crate) server_conns: RwLock<HashMap<NodeID, Arc<ServerConn>>>,
|
||||
pub(crate) client_conns: RwLock<HashMap<NodeID, Arc<ClientConn>>>,
|
||||
|
||||
pub(crate) endpoints: RwLock<HashMap<String, DynEndpoint>>,
|
||||
hello_endpoint: ArcSwapOption<Endpoint<HelloMessage, NetApp>>,
|
||||
server_conns: RwLock<HashMap<NodeID, Arc<ServerConn>>>,
|
||||
client_conns: RwLock<HashMap<NodeID, Arc<ClientConn>>>,
|
||||
|
||||
pub(crate) msg_handlers: ArcSwap<HashMap<MessageKind, Arc<Handler>>>,
|
||||
on_connected_handler: ArcSwapOption<OnConnectHandler>,
|
||||
on_disconnected_handler: ArcSwapOption<OnDisconnectHandler>,
|
||||
}
|
||||
|
@ -86,40 +73,69 @@ struct ListenParams {
|
|||
public_addr: Option<IpAddr>,
|
||||
}
|
||||
|
||||
async fn net_handler_aux<M, F, R>(handler: Arc<F>, remote: NodeID, bytes: Bytes) -> Vec<u8>
|
||||
where
|
||||
M: Message + 'static,
|
||||
F: Fn(NodeID, M) -> R + Send + Sync + 'static,
|
||||
R: Future<Output = <M as Message>::Response> + Send + Sync,
|
||||
{
|
||||
debug!(
|
||||
"Handling message of kind {:08x} from {}",
|
||||
M::KIND,
|
||||
hex::encode(remote)
|
||||
);
|
||||
let begin_time = Instant::now();
|
||||
let res = match rmp_serde::decode::from_read_ref::<_, M>(&bytes[..]) {
|
||||
Ok(msg) => Ok(handler(remote, msg).await),
|
||||
Err(e) => Err(e.to_string()),
|
||||
};
|
||||
let end_time = Instant::now();
|
||||
debug!(
|
||||
"Request {:08x} from {} handled in {}msec",
|
||||
M::KIND,
|
||||
hex::encode(remote),
|
||||
(end_time - begin_time).as_millis()
|
||||
);
|
||||
rmp_to_vec_all_named(&res).unwrap_or_default()
|
||||
}
|
||||
|
||||
async fn local_handler_aux<M, F, R>(handler: Arc<F>, remote: NodeID, msg: DynMsg) -> DynMsg
|
||||
where
|
||||
M: Message + 'static,
|
||||
F: Fn(NodeID, M) -> R + Send + Sync + 'static,
|
||||
R: Future<Output = <M as Message>::Response> + Send + Sync,
|
||||
{
|
||||
debug!("Handling message of kind {:08x} from ourself", M::KIND);
|
||||
let msg = (msg as Box<dyn Any + 'static>).downcast::<M>().unwrap();
|
||||
let res = handler(remote, *msg).await;
|
||||
Box::new(res)
|
||||
}
|
||||
|
||||
impl NetApp {
|
||||
/// Creates a new instance of NetApp, which can serve either as a full p2p node,
|
||||
/// or just as a passive client. To upgrade to a full p2p node, spawn a listener
|
||||
/// using `.listen()`
|
||||
///
|
||||
/// Our Peer ID is the public key associated to the secret key given here.
|
||||
pub fn new(app_version_tag: u64, netid: auth::Key, privkey: ed25519::SecretKey) -> Arc<Self> {
|
||||
let mut version_tag = [0u8; 16];
|
||||
version_tag[0..8].copy_from_slice(&u64::to_be_bytes(NETAPP_VERSION_TAG)[..]);
|
||||
version_tag[8..16].copy_from_slice(&u64::to_be_bytes(app_version_tag)[..]);
|
||||
|
||||
pub fn new(netid: auth::Key, privkey: ed25519::SecretKey) -> Arc<Self> {
|
||||
let id = privkey.public_key();
|
||||
let netapp = Arc::new(Self {
|
||||
listen_params: ArcSwapOption::new(None),
|
||||
version_tag,
|
||||
netid,
|
||||
id,
|
||||
privkey,
|
||||
server_conns: RwLock::new(HashMap::new()),
|
||||
client_conns: RwLock::new(HashMap::new()),
|
||||
endpoints: RwLock::new(HashMap::new()),
|
||||
hello_endpoint: ArcSwapOption::new(None),
|
||||
msg_handlers: ArcSwap::new(Arc::new(HashMap::new())),
|
||||
on_connected_handler: ArcSwapOption::new(None),
|
||||
on_disconnected_handler: ArcSwapOption::new(None),
|
||||
});
|
||||
|
||||
netapp
|
||||
.hello_endpoint
|
||||
.swap(Some(netapp.endpoint("__netapp/netapp.rs/Hello".into())));
|
||||
netapp
|
||||
.hello_endpoint
|
||||
.load_full()
|
||||
.unwrap()
|
||||
.set_handler(netapp.clone());
|
||||
let netapp2 = netapp.clone();
|
||||
netapp.add_msg_handler::<HelloMessage, _, _>(move |from: NodeID, msg: HelloMessage| {
|
||||
netapp2.handle_hello_message(from, msg);
|
||||
async {}
|
||||
});
|
||||
|
||||
netapp
|
||||
}
|
||||
|
@ -146,134 +162,72 @@ impl NetApp {
|
|||
.store(Some(Arc::new(Box::new(handler))));
|
||||
}
|
||||
|
||||
/// Create a new endpoint with path `path`,
|
||||
/// that handles messages of type `M`.
|
||||
/// `H` is the type of the object that should handle requests
|
||||
/// to this endpoint on the local node. If you don't want
|
||||
/// to handle request on the local node (e.g. if this node
|
||||
/// is only a client in the network), define the type `H`
|
||||
/// to be `()`.
|
||||
/// This function will panic if the endpoint has already been
|
||||
/// created.
|
||||
pub fn endpoint<M, H>(self: &Arc<Self>, path: String) -> Arc<Endpoint<M, H>>
|
||||
/// Add a handler for a certain message type. Note that only one handler
|
||||
/// can be specified for each message type.
|
||||
/// The handler is an asynchronous function, i.e. a function that returns
|
||||
/// a future.
|
||||
pub fn add_msg_handler<M, F, R>(&self, handler: F)
|
||||
where
|
||||
M: Message + 'static,
|
||||
H: StreamingEndpointHandler<M> + 'static,
|
||||
F: Fn(NodeID, M) -> R + Send + Sync + 'static,
|
||||
R: Future<Output = <M as Message>::Response> + Send + Sync + 'static,
|
||||
{
|
||||
let endpoint = Arc::new(Endpoint::<M, H>::new(self.clone(), path.clone()));
|
||||
let endpoint_arc = EndpointArc(endpoint.clone());
|
||||
if self
|
||||
.endpoints
|
||||
.write()
|
||||
.unwrap()
|
||||
.insert(path.clone(), Box::new(endpoint_arc))
|
||||
.is_some()
|
||||
{
|
||||
panic!("Redefining endpoint: {}", path);
|
||||
};
|
||||
endpoint
|
||||
let handler = Arc::new(handler);
|
||||
|
||||
let handler2 = handler.clone();
|
||||
let net_handler = Box::new(move |remote: NodeID, bytes: Bytes| {
|
||||
let fun: Pin<Box<dyn Future<Output = Vec<u8>> + Sync + Send>> =
|
||||
Box::pin(net_handler_aux(handler2.clone(), remote, bytes));
|
||||
fun
|
||||
});
|
||||
|
||||
let self_id = self.id;
|
||||
let local_handler = Box::new(move |msg: DynMsg| {
|
||||
let fun: Pin<Box<dyn Future<Output = DynMsg> + Sync + Send>> =
|
||||
Box::pin(local_handler_aux(handler.clone(), self_id, msg));
|
||||
fun
|
||||
});
|
||||
|
||||
let funs = Arc::new(Handler {
|
||||
net_handler,
|
||||
local_handler,
|
||||
});
|
||||
|
||||
let mut handlers = self.msg_handlers.load().as_ref().clone();
|
||||
handlers.insert(M::KIND, funs);
|
||||
self.msg_handlers.store(Arc::new(handlers));
|
||||
}
|
||||
|
||||
/// Main listening process for our app. This future runs during the whole
|
||||
/// run time of our application.
|
||||
/// If this is not called, the NetApp instance remains a passive client.
|
||||
pub async fn listen(
|
||||
self: Arc<Self>,
|
||||
listen_addr: SocketAddr,
|
||||
public_addr: Option<IpAddr>,
|
||||
mut must_exit: watch::Receiver<bool>,
|
||||
) {
|
||||
pub async fn listen(self: Arc<Self>, listen_addr: SocketAddr, public_addr: Option<IpAddr>) {
|
||||
let listen_params = ListenParams {
|
||||
listen_addr,
|
||||
public_addr,
|
||||
};
|
||||
if self
|
||||
.listen_params
|
||||
.swap(Some(Arc::new(listen_params)))
|
||||
.is_some()
|
||||
{
|
||||
error!("Trying to listen on NetApp but we're already listening!");
|
||||
}
|
||||
self.listen_params.store(Some(Arc::new(listen_params)));
|
||||
|
||||
let listener = TcpListener::bind(listen_addr).await.unwrap();
|
||||
info!("Listening on {}", listen_addr);
|
||||
|
||||
let (conn_in, mut conn_out) = mpsc::unbounded_channel();
|
||||
let connection_collector = tokio::spawn(async move {
|
||||
let mut collection = FuturesUnordered::new();
|
||||
loop {
|
||||
if collection.is_empty() {
|
||||
match conn_out.recv().await {
|
||||
Some(f) => collection.push(f),
|
||||
None => break,
|
||||
}
|
||||
} else {
|
||||
select! {
|
||||
new_fut = conn_out.recv() => {
|
||||
match new_fut {
|
||||
Some(f) => collection.push(f),
|
||||
None => break,
|
||||
}
|
||||
}
|
||||
result = collection.next() => {
|
||||
trace!("Collected connection: {:?}", result);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
debug!("Collecting last open server connections.");
|
||||
while let Some(conn_res) = collection.next().await {
|
||||
trace!("Collected connection: {:?}", conn_res);
|
||||
}
|
||||
debug!("No more server connections to collect");
|
||||
});
|
||||
|
||||
while !*must_exit.borrow_and_update() {
|
||||
let (socket, peer_addr) = select! {
|
||||
sockres = listener.accept() => {
|
||||
match sockres {
|
||||
Ok(x) => x,
|
||||
Err(e) => {
|
||||
warn!("Error in listener.accept: {}", e);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
},
|
||||
_ = must_exit.changed() => continue,
|
||||
};
|
||||
|
||||
// The second item contains the IP and port of the new connection.
|
||||
let (socket, _) = listener.accept().await.unwrap();
|
||||
info!(
|
||||
"Incoming connection from {}, negotiating handshake...",
|
||||
peer_addr
|
||||
match socket.peer_addr() {
|
||||
Ok(x) => format!("{}", x),
|
||||
Err(e) => format!("<invalid addr: {}>", e),
|
||||
}
|
||||
);
|
||||
let self2 = self.clone();
|
||||
let must_exit2 = must_exit.clone();
|
||||
conn_in
|
||||
.send(tokio::spawn(async move {
|
||||
ServerConn::run(self2, socket, must_exit2)
|
||||
tokio::spawn(async move {
|
||||
ServerConn::run(self2, socket)
|
||||
.await
|
||||
.log_err("ServerConn::run");
|
||||
}))
|
||||
.log_err("Failed to send connection to connection collector");
|
||||
});
|
||||
}
|
||||
|
||||
drop(conn_in);
|
||||
|
||||
connection_collector
|
||||
.await
|
||||
.log_err("Failed to await for connection collector");
|
||||
}
|
||||
|
||||
/// Drop all endpoint handlers, as well as handlers for connection/disconnection
|
||||
/// events. (This disables the peering strategy)
|
||||
///
|
||||
/// Use this when terminating to break reference cycles
|
||||
pub fn drop_all_handlers(&self) {
|
||||
for (_, endpoint) in self.endpoints.read().unwrap().iter() {
|
||||
endpoint.drop_handler();
|
||||
}
|
||||
self.on_connected_handler.store(None);
|
||||
self.on_disconnected_handler.store(None);
|
||||
}
|
||||
|
||||
/// Attempt to connect to a peer, given by its ip:port and its public key.
|
||||
|
@ -313,7 +267,7 @@ impl NetApp {
|
|||
if let Some(c) = conn {
|
||||
debug!(
|
||||
"Closing connection to {} ({})",
|
||||
hex::encode(&c.peer_id[..8]),
|
||||
hex::encode(c.peer_id),
|
||||
c.remote_addr
|
||||
);
|
||||
c.close();
|
||||
|
@ -334,17 +288,27 @@ impl NetApp {
|
|||
});
|
||||
}
|
||||
|
||||
/// Close the incoming connection from a certain client to us,
|
||||
/// if such a connection is currently open.
|
||||
pub fn server_disconnect(self: &Arc<Self>, id: &NodeID) {
|
||||
let conn = self.server_conns.read().unwrap().get(id).cloned();
|
||||
if let Some(c) = conn {
|
||||
debug!(
|
||||
"Closing incoming connection from {} ({})",
|
||||
hex::encode(c.peer_id),
|
||||
c.remote_addr
|
||||
);
|
||||
c.close();
|
||||
}
|
||||
}
|
||||
|
||||
// Called from conn.rs when an incoming connection is successfully established
|
||||
// Registers the connection in our list of connections
|
||||
// Do not yet call the on_connected handler, because we don't know if the remote
|
||||
// has an actual IP address and port we can call them back on.
|
||||
// We will know this when they send a Hello message, which is handled below.
|
||||
pub(crate) fn connected_as_server(&self, id: NodeID, conn: Arc<ServerConn>) {
|
||||
info!(
|
||||
"Accepted connection from {} at {}",
|
||||
hex::encode(&id[..8]),
|
||||
conn.remote_addr
|
||||
);
|
||||
info!("Accepted connection from {}", hex::encode(id));
|
||||
|
||||
self.server_conns.write().unwrap().insert(id, conn);
|
||||
}
|
||||
|
@ -354,12 +318,21 @@ impl NetApp {
|
|||
// At this point we know they are a full network member, and not just a client,
|
||||
// and we call the on_connected handler so that the peering strategy knows
|
||||
// we have a new potential peer
|
||||
fn handle_hello_message(&self, id: NodeID, msg: HelloMessage) {
|
||||
if let Some(h) = self.on_connected_handler.load().as_ref() {
|
||||
if let Some(c) = self.server_conns.read().unwrap().get(&id) {
|
||||
let remote_ip = msg.server_addr.unwrap_or_else(|| c.remote_addr.ip());
|
||||
let remote_addr = SocketAddr::new(remote_ip, msg.server_port);
|
||||
h(id, remote_addr, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Called from conn.rs when an incoming connection is closed.
|
||||
// We deregister the connection from server_conns and call the
|
||||
// handler registered by on_disconnected
|
||||
pub(crate) fn disconnected_as_server(&self, id: &NodeID, conn: Arc<ServerConn>) {
|
||||
info!("Connection from {} closed", hex::encode(&id[..8]));
|
||||
info!("Connection from {} closed", hex::encode(id));
|
||||
|
||||
let mut conn_list = self.server_conns.write().unwrap();
|
||||
if let Some(c) = conn_list.get(id) {
|
||||
|
@ -382,7 +355,7 @@ impl NetApp {
|
|||
// they know on which port to call us back. (TODO: don't do this if we are
|
||||
// just a simple client and not a full p2p node)
|
||||
pub(crate) fn connected_as_client(&self, id: NodeID, conn: Arc<ClientConn>) {
|
||||
info!("Connection established to {}", hex::encode(&id[..8]));
|
||||
info!("Connection established to {}", hex::encode(id));
|
||||
|
||||
{
|
||||
let old_c_opt = self.client_conns.write().unwrap().insert(id, conn.clone());
|
||||
|
@ -398,11 +371,8 @@ impl NetApp {
|
|||
if let Some(lp) = self.listen_params.load_full() {
|
||||
let server_addr = lp.public_addr;
|
||||
let server_port = lp.listen_addr.port();
|
||||
let hello_endpoint = self.hello_endpoint.load_full().unwrap();
|
||||
tokio::spawn(async move {
|
||||
hello_endpoint
|
||||
.call(
|
||||
&conn.peer_id,
|
||||
conn.request(
|
||||
HelloMessage {
|
||||
server_addr,
|
||||
server_port,
|
||||
|
@ -410,7 +380,6 @@ impl NetApp {
|
|||
PRIO_NORMAL,
|
||||
)
|
||||
.await
|
||||
.map(|_| ())
|
||||
.log_err("Sending hello message");
|
||||
});
|
||||
}
|
||||
|
@ -420,7 +389,7 @@ impl NetApp {
|
|||
// The connection is removed from conn_list, and the on_disconnected handler
|
||||
// is called.
|
||||
pub(crate) fn disconnected_as_client(&self, id: &NodeID, conn: Arc<ClientConn>) {
|
||||
info!("Connection to {} closed", hex::encode(&id[..8]));
|
||||
info!("Connection to {} closed", hex::encode(id));
|
||||
let mut conn_list = self.client_conns.write().unwrap();
|
||||
if let Some(c) = conn_list.get(id) {
|
||||
if Arc::ptr_eq(c, &conn) {
|
||||
|
@ -435,17 +404,44 @@ impl NetApp {
|
|||
// else case: happens if connection was removed in .disconnect()
|
||||
// in which case on_disconnected_handler was already called
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
impl EndpointHandler<HelloMessage> for NetApp {
|
||||
async fn handle(self: &Arc<Self>, msg: &HelloMessage, from: NodeID) {
|
||||
debug!("Hello from {:?}: {:?}", hex::encode(&from[..8]), msg);
|
||||
if let Some(h) = self.on_connected_handler.load().as_ref() {
|
||||
if let Some(c) = self.server_conns.read().unwrap().get(&from) {
|
||||
let remote_ip = msg.server_addr.unwrap_or_else(|| c.remote_addr.ip());
|
||||
let remote_addr = SocketAddr::new(remote_ip, msg.server_port);
|
||||
h(from, remote_addr, true);
|
||||
/// Send a message to a remote host to which a client connection is already
|
||||
/// established, and await their response. The target is the id of the peer we
|
||||
/// want to send the message to.
|
||||
/// The priority is an `u8`, with lower numbers meaning highest priority.
|
||||
pub async fn request<T>(
|
||||
&self,
|
||||
target: &NodeID,
|
||||
rq: T,
|
||||
prio: RequestPriority,
|
||||
) -> Result<<T as Message>::Response, Error>
|
||||
where
|
||||
T: Message + 'static,
|
||||
{
|
||||
if *target == self.id {
|
||||
let handler = self.msg_handlers.load().get(&T::KIND).cloned();
|
||||
match handler {
|
||||
None => Err(Error::Message(format!(
|
||||
"No handler registered for message kind {:08x}",
|
||||
T::KIND
|
||||
))),
|
||||
Some(h) => {
|
||||
let local_handler = &h.local_handler;
|
||||
let res = local_handler(Box::new(rq)).await;
|
||||
let res_t = (res as Box<dyn Any + 'static>)
|
||||
.downcast::<<T as Message>::Response>()
|
||||
.unwrap();
|
||||
Ok(*res_t)
|
||||
}
|
||||
}
|
||||
} else {
|
||||
let conn = self.client_conns.read().unwrap().get(target).cloned();
|
||||
match conn {
|
||||
None => Err(Error::Message(format!(
|
||||
"Not connected: {}",
|
||||
hex::encode(target)
|
||||
))),
|
||||
Some(c) => c.request(rq, prio).await,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -3,7 +3,6 @@ use std::net::SocketAddr;
|
|||
use std::sync::{Arc, RwLock};
|
||||
use std::time::Duration;
|
||||
|
||||
use async_trait::async_trait;
|
||||
use log::{debug, info, trace, warn};
|
||||
use lru::LruCache;
|
||||
use rand::{thread_rng, Rng};
|
||||
|
@ -11,11 +10,9 @@ use serde::{Deserialize, Serialize};
|
|||
|
||||
use sodiumoxide::crypto::hash;
|
||||
|
||||
use tokio::sync::watch;
|
||||
|
||||
use crate::endpoint::*;
|
||||
use crate::message::*;
|
||||
use crate::netapp::*;
|
||||
use crate::proto::*;
|
||||
use crate::NodeID;
|
||||
|
||||
// -- Protocol messages --
|
||||
|
@ -24,6 +21,7 @@ use crate::NodeID;
|
|||
struct PullMessage {}
|
||||
|
||||
impl Message for PullMessage {
|
||||
const KIND: MessageKind = 0x42001100;
|
||||
type Response = PushMessage;
|
||||
}
|
||||
|
||||
|
@ -33,6 +31,7 @@ struct PushMessage {
|
|||
}
|
||||
|
||||
impl Message for PushMessage {
|
||||
const KIND: MessageKind = 0x42001101;
|
||||
type Response = ();
|
||||
}
|
||||
|
||||
|
@ -138,7 +137,7 @@ impl BasaltView {
|
|||
let mut ret = vec![];
|
||||
let mut rng = thread_rng();
|
||||
for _i in 0..count {
|
||||
let idx = rng.gen_range(0..possibles.len());
|
||||
let idx = rng.gen_range(0, possibles.len());
|
||||
ret.push(self.slots[possibles[idx]].peer.unwrap());
|
||||
}
|
||||
ret
|
||||
|
@ -237,8 +236,6 @@ pub struct BasaltParams {
|
|||
|
||||
pub struct Basalt {
|
||||
netapp: Arc<NetApp>,
|
||||
pull_endpoint: Arc<Endpoint<PullMessage, Self>>,
|
||||
push_endpoint: Arc<Endpoint<PushMessage, Self>>,
|
||||
|
||||
param: BasaltParams,
|
||||
bootstrap_peers: Vec<Peer>,
|
||||
|
@ -267,8 +264,6 @@ impl Basalt {
|
|||
|
||||
let basalt = Arc::new(Self {
|
||||
netapp: netapp.clone(),
|
||||
pull_endpoint: netapp.endpoint("__netapp/peering/basalt.rs/Pull".into()),
|
||||
push_endpoint: netapp.endpoint("__netapp/peering/basalt.rs/Push".into()),
|
||||
param,
|
||||
bootstrap_peers,
|
||||
view: RwLock::new(view),
|
||||
|
@ -276,9 +271,6 @@ impl Basalt {
|
|||
backlog: RwLock::new(backlog),
|
||||
});
|
||||
|
||||
basalt.pull_endpoint.set_handler(basalt.clone());
|
||||
basalt.push_endpoint.set_handler(basalt.clone());
|
||||
|
||||
let basalt2 = basalt.clone();
|
||||
netapp.on_connected(move |id: NodeID, addr: SocketAddr, is_incoming: bool| {
|
||||
basalt2.on_connected(id, addr, is_incoming);
|
||||
|
@ -289,6 +281,18 @@ impl Basalt {
|
|||
basalt2.on_disconnected(id, is_incoming);
|
||||
});
|
||||
|
||||
let basalt2 = basalt.clone();
|
||||
netapp.add_msg_handler::<PullMessage, _, _>(move |_from: NodeID, _pullmsg: PullMessage| {
|
||||
let push_msg = basalt2.make_push_message();
|
||||
async move { push_msg }
|
||||
});
|
||||
|
||||
let basalt2 = basalt.clone();
|
||||
netapp.add_msg_handler::<PushMessage, _, _>(move |_from: NodeID, push_msg: PushMessage| {
|
||||
basalt2.handle_peer_list(&push_msg.peers[..]);
|
||||
async move {}
|
||||
});
|
||||
|
||||
basalt
|
||||
}
|
||||
|
||||
|
@ -305,19 +309,18 @@ impl Basalt {
|
|||
.collect::<Vec<_>>()
|
||||
}
|
||||
|
||||
pub async fn run(self: Arc<Self>, must_exit: watch::Receiver<bool>) {
|
||||
pub async fn run(self: Arc<Self>) {
|
||||
for peer in self.bootstrap_peers.iter() {
|
||||
tokio::spawn(self.clone().try_connect(*peer));
|
||||
}
|
||||
|
||||
tokio::join!(
|
||||
self.clone().run_pushpull_loop(must_exit.clone()),
|
||||
self.clone().run_reset_loop(must_exit.clone()),
|
||||
);
|
||||
let pushpull_loop = self.clone().run_pushpull_loop();
|
||||
let reset_loop = self.run_reset_loop();
|
||||
tokio::join!(pushpull_loop, reset_loop);
|
||||
}
|
||||
|
||||
async fn run_pushpull_loop(self: Arc<Self>, must_exit: watch::Receiver<bool>) {
|
||||
while !*must_exit.borrow() {
|
||||
async fn run_pushpull_loop(self: Arc<Self>) {
|
||||
loop {
|
||||
tokio::time::sleep(self.param.exchange_interval).await;
|
||||
|
||||
let peers = self.view.read().unwrap().sample(2);
|
||||
|
@ -330,8 +333,8 @@ impl Basalt {
|
|||
|
||||
async fn do_pull(self: Arc<Self>, peer: NodeID) {
|
||||
match self
|
||||
.pull_endpoint
|
||||
.call(&peer, PullMessage {}, PRIO_NORMAL)
|
||||
.netapp
|
||||
.request(&peer, PullMessage {}, PRIO_NORMAL)
|
||||
.await
|
||||
{
|
||||
Ok(resp) => {
|
||||
|
@ -346,7 +349,7 @@ impl Basalt {
|
|||
|
||||
async fn do_push(self: Arc<Self>, peer: NodeID) {
|
||||
let push_msg = self.make_push_message();
|
||||
match self.push_endpoint.call(&peer, push_msg, PRIO_NORMAL).await {
|
||||
match self.netapp.request(&peer, push_msg, PRIO_NORMAL).await {
|
||||
Ok(_) => {
|
||||
trace!("KYEV PEXo {}", hex::encode(peer));
|
||||
}
|
||||
|
@ -363,8 +366,8 @@ impl Basalt {
|
|||
}
|
||||
}
|
||||
|
||||
async fn run_reset_loop(self: Arc<Self>, must_exit: watch::Receiver<bool>) {
|
||||
while !*must_exit.borrow() {
|
||||
async fn run_reset_loop(self: Arc<Self>) {
|
||||
loop {
|
||||
tokio::time::sleep(self.param.reset_interval).await;
|
||||
|
||||
{
|
||||
|
@ -466,20 +469,6 @@ impl Basalt {
|
|||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
impl EndpointHandler<PullMessage> for Basalt {
|
||||
async fn handle(self: &Arc<Self>, _pullmsg: &PullMessage, _from: NodeID) -> PushMessage {
|
||||
self.make_push_message()
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
impl EndpointHandler<PushMessage> for Basalt {
|
||||
async fn handle(self: &Arc<Self>, pushmsg: &PushMessage, _from: NodeID) {
|
||||
self.handle_peer_list(&pushmsg.peers[..]);
|
||||
}
|
||||
}
|
||||
|
||||
fn rand_seed() -> Seed {
|
||||
let mut seed = [0u8; 32];
|
||||
sodiumoxide::randombytes::randombytes_into(&mut seed[..]);
|
||||
|
|
|
@ -4,30 +4,20 @@ use std::sync::atomic::{self, AtomicU64};
|
|||
use std::sync::{Arc, RwLock};
|
||||
use std::time::{Duration, Instant};
|
||||
|
||||
use arc_swap::ArcSwap;
|
||||
use async_trait::async_trait;
|
||||
use log::{debug, info, trace, warn};
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use tokio::select;
|
||||
use tokio::sync::watch;
|
||||
|
||||
use sodiumoxide::crypto::hash;
|
||||
|
||||
use crate::endpoint::*;
|
||||
use crate::error::*;
|
||||
use crate::netapp::*;
|
||||
|
||||
use crate::message::*;
|
||||
use crate::netapp::*;
|
||||
use crate::proto::*;
|
||||
use crate::NodeID;
|
||||
|
||||
const CONN_RETRY_INTERVAL: Duration = Duration::from_secs(30);
|
||||
const CONN_MAX_RETRIES: usize = 10;
|
||||
const PING_INTERVAL: Duration = Duration::from_secs(15);
|
||||
const PING_INTERVAL: Duration = Duration::from_secs(10);
|
||||
const LOOP_DELAY: Duration = Duration::from_secs(1);
|
||||
const FAILED_PING_THRESHOLD: usize = 4;
|
||||
|
||||
const DEFAULT_PING_TIMEOUT_MILLIS: u64 = 10_000;
|
||||
|
||||
// -- Protocol messages --
|
||||
|
||||
|
@ -38,6 +28,7 @@ struct PingMessage {
|
|||
}
|
||||
|
||||
impl Message for PingMessage {
|
||||
const KIND: MessageKind = 0x42001000;
|
||||
type Response = PingMessage;
|
||||
}
|
||||
|
||||
|
@ -47,100 +38,55 @@ struct PeerListMessage {
|
|||
}
|
||||
|
||||
impl Message for PeerListMessage {
|
||||
const KIND: MessageKind = 0x42001001;
|
||||
type Response = PeerListMessage;
|
||||
}
|
||||
|
||||
// -- Algorithm data structures --
|
||||
|
||||
#[derive(Debug)]
|
||||
struct PeerInfoInternal {
|
||||
// addr is the currently connected address,
|
||||
// or the last address we were connected to,
|
||||
// or an arbitrary address some other peer gave us
|
||||
struct PeerInfo {
|
||||
addr: SocketAddr,
|
||||
// all_addrs contains all of the addresses everyone gave us
|
||||
all_addrs: Vec<SocketAddr>,
|
||||
|
||||
state: PeerConnState,
|
||||
last_send_ping: Option<Instant>,
|
||||
last_seen: Option<Instant>,
|
||||
ping: VecDeque<Duration>,
|
||||
failed_pings: usize,
|
||||
}
|
||||
|
||||
impl PeerInfoInternal {
|
||||
fn new(addr: SocketAddr, state: PeerConnState) -> Self {
|
||||
Self {
|
||||
addr,
|
||||
all_addrs: vec![addr],
|
||||
state,
|
||||
last_send_ping: None,
|
||||
last_seen: None,
|
||||
ping: VecDeque::new(),
|
||||
failed_pings: 0,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Information that the full mesh peering strategy can return about the peers it knows of
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct PeerInfo {
|
||||
/// The node's identifier (its public key)
|
||||
pub struct PeerInfoPub {
|
||||
pub id: NodeID,
|
||||
/// The node's network address
|
||||
pub addr: SocketAddr,
|
||||
/// The current status of our connection to this node
|
||||
pub state: PeerConnState,
|
||||
/// The last time at which the node was seen
|
||||
pub last_seen: Option<Instant>,
|
||||
/// The average ping to this node on recent observations (if at least one ping value is known)
|
||||
pub avg_ping: Option<Duration>,
|
||||
/// The maximum observed ping to this node on recent observations (if at least one
|
||||
/// ping value is known)
|
||||
pub max_ping: Option<Duration>,
|
||||
/// The median ping to this node on recent observations (if at least one ping value
|
||||
/// is known)
|
||||
pub med_ping: Option<Duration>,
|
||||
}
|
||||
|
||||
impl PeerInfo {
|
||||
/// Returns true if we can currently send requests to this peer
|
||||
pub fn is_up(&self) -> bool {
|
||||
self.state.is_up()
|
||||
}
|
||||
}
|
||||
|
||||
/// PeerConnState: possible states for our tentative connections to given peer
|
||||
/// This structure is only interested in recording connection info for outgoing
|
||||
/// TCP connections
|
||||
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
|
||||
// PeerConnState: possible states for our tentative connections to given peer
|
||||
// This module is only interested in recording connection info for outgoing
|
||||
// TCP connections
|
||||
#[derive(Copy, Clone, Debug, PartialEq)]
|
||||
pub enum PeerConnState {
|
||||
/// This entry represents ourself (the local node)
|
||||
// This entry represents ourself
|
||||
Ourself,
|
||||
|
||||
/// We currently have a connection to this peer
|
||||
// We currently have a connection to this peer
|
||||
Connected,
|
||||
|
||||
/// Our next connection tentative (the nth, where n is the first value of the tuple)
|
||||
/// will be at given Instant
|
||||
// Our next connection tentative (the nth, where n is the first value)
|
||||
// will be at given Instant
|
||||
Waiting(usize, Instant),
|
||||
|
||||
/// A connection tentative is in progress (the nth, where n is the value stored)
|
||||
// A connection tentative is in progress
|
||||
Trying(usize),
|
||||
|
||||
/// We abandonned trying to connect to this peer (too many failed attempts)
|
||||
// We abandonned trying to connect to this peer (too many failed attempts)
|
||||
Abandonned,
|
||||
}
|
||||
|
||||
impl PeerConnState {
|
||||
/// Returns true if we can currently send requests to this peer
|
||||
pub fn is_up(&self) -> bool {
|
||||
matches!(self, Self::Ourself | Self::Connected)
|
||||
}
|
||||
}
|
||||
|
||||
struct KnownHosts {
|
||||
list: HashMap<NodeID, PeerInfoInternal>,
|
||||
list: HashMap<NodeID, PeerInfo>,
|
||||
hash: hash::Digest,
|
||||
}
|
||||
|
||||
|
@ -153,7 +99,7 @@ impl KnownHosts {
|
|||
fn update_hash(&mut self) {
|
||||
self.hash = Self::calculate_hash(&self.list);
|
||||
}
|
||||
fn map_into_vec(input: &HashMap<NodeID, PeerInfoInternal>) -> Vec<(NodeID, SocketAddr)> {
|
||||
fn map_into_vec(input: &HashMap<NodeID, PeerInfo>) -> Vec<(NodeID, SocketAddr)> {
|
||||
let mut list = Vec::with_capacity(input.len());
|
||||
for (id, peer) in input.iter() {
|
||||
if peer.state == PeerConnState::Connected || peer.state == PeerConnState::Ourself {
|
||||
|
@ -162,106 +108,96 @@ impl KnownHosts {
|
|||
}
|
||||
list
|
||||
}
|
||||
fn calculate_hash(input: &HashMap<NodeID, PeerInfoInternal>) -> hash::Digest {
|
||||
fn calculate_hash(input: &HashMap<NodeID, PeerInfo>) -> hash::Digest {
|
||||
let mut list = Self::map_into_vec(input);
|
||||
list.sort();
|
||||
let mut hash_state = hash::State::new();
|
||||
for (id, addr) in list {
|
||||
hash_state.update(&id[..]);
|
||||
hash_state.update(&format!("{}\n", addr).into_bytes()[..]);
|
||||
hash_state.update(&format!("{}", addr).into_bytes()[..]);
|
||||
}
|
||||
hash_state.finalize()
|
||||
}
|
||||
}
|
||||
|
||||
/// A "Full Mesh" peering strategy is a peering strategy that tries
|
||||
/// to establish and maintain a direct connection with all of the
|
||||
/// known nodes in the network.
|
||||
pub struct FullMeshPeeringStrategy {
|
||||
netapp: Arc<NetApp>,
|
||||
known_hosts: RwLock<KnownHosts>,
|
||||
public_peer_list: ArcSwap<Vec<PeerInfo>>,
|
||||
|
||||
next_ping_id: AtomicU64,
|
||||
ping_endpoint: Arc<Endpoint<PingMessage, Self>>,
|
||||
peer_list_endpoint: Arc<Endpoint<PeerListMessage, Self>>,
|
||||
|
||||
ping_timeout_millis: AtomicU64,
|
||||
}
|
||||
|
||||
impl FullMeshPeeringStrategy {
|
||||
/// Create a new Full Mesh peering strategy.
|
||||
/// The strategy will not be run until `.run()` is called and awaited.
|
||||
/// Once that happens, the peering strategy will try to connect
|
||||
/// to all of the nodes specified in the bootstrap list.
|
||||
pub fn new(
|
||||
netapp: Arc<NetApp>,
|
||||
bootstrap_list: Vec<(NodeID, SocketAddr)>,
|
||||
our_addr: Option<SocketAddr>,
|
||||
) -> Arc<Self> {
|
||||
pub fn new(netapp: Arc<NetApp>, bootstrap_list: Vec<(NodeID, SocketAddr)>) -> Arc<Self> {
|
||||
let mut known_hosts = KnownHosts::new();
|
||||
for (id, addr) in bootstrap_list {
|
||||
if id != netapp.id {
|
||||
known_hosts.list.insert(
|
||||
id,
|
||||
PeerInfoInternal::new(addr, PeerConnState::Waiting(0, Instant::now())),
|
||||
PeerInfo {
|
||||
addr,
|
||||
state: PeerConnState::Waiting(0, Instant::now()),
|
||||
last_seen: None,
|
||||
ping: VecDeque::new(),
|
||||
},
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
if let Some(addr) = our_addr {
|
||||
known_hosts.list.insert(
|
||||
netapp.id,
|
||||
PeerInfoInternal::new(addr, PeerConnState::Ourself),
|
||||
);
|
||||
}
|
||||
|
||||
let strat = Arc::new(Self {
|
||||
netapp: netapp.clone(),
|
||||
known_hosts: RwLock::new(known_hosts),
|
||||
public_peer_list: ArcSwap::new(Arc::new(Vec::new())),
|
||||
next_ping_id: AtomicU64::new(42),
|
||||
ping_endpoint: netapp.endpoint("__netapp/peering/fullmesh.rs/Ping".into()),
|
||||
peer_list_endpoint: netapp.endpoint("__netapp/peering/fullmesh.rs/PeerList".into()),
|
||||
ping_timeout_millis: DEFAULT_PING_TIMEOUT_MILLIS.into(),
|
||||
});
|
||||
|
||||
strat.update_public_peer_list(&strat.known_hosts.read().unwrap());
|
||||
let strat2 = strat.clone();
|
||||
netapp.add_msg_handler::<PingMessage, _, _>(move |from: NodeID, ping: PingMessage| {
|
||||
let ping_resp = PingMessage {
|
||||
id: ping.id,
|
||||
peer_list_hash: strat2.known_hosts.read().unwrap().hash,
|
||||
};
|
||||
debug!("Ping from {}", hex::encode(&from));
|
||||
async move { ping_resp }
|
||||
});
|
||||
|
||||
strat.ping_endpoint.set_handler(strat.clone());
|
||||
strat.peer_list_endpoint.set_handler(strat.clone());
|
||||
let strat2 = strat.clone();
|
||||
netapp.add_msg_handler::<PeerListMessage, _, _>(
|
||||
move |_from: NodeID, peer_list: PeerListMessage| {
|
||||
strat2.handle_peer_list(&peer_list.list[..]);
|
||||
let peer_list = KnownHosts::map_into_vec(&strat2.known_hosts.read().unwrap().list);
|
||||
let resp = PeerListMessage { list: peer_list };
|
||||
async move { resp }
|
||||
},
|
||||
);
|
||||
|
||||
let strat2 = strat.clone();
|
||||
netapp.on_connected(move |id: NodeID, addr: SocketAddr, is_incoming: bool| {
|
||||
let strat2 = strat2.clone();
|
||||
strat2.on_connected(id, addr, is_incoming);
|
||||
tokio::spawn(strat2.on_connected(id, addr, is_incoming));
|
||||
});
|
||||
|
||||
let strat2 = strat.clone();
|
||||
netapp.on_disconnected(move |id: NodeID, is_incoming: bool| {
|
||||
let strat2 = strat2.clone();
|
||||
strat2.on_disconnected(id, is_incoming);
|
||||
tokio::spawn(strat2.on_disconnected(id, is_incoming));
|
||||
});
|
||||
|
||||
strat
|
||||
}
|
||||
|
||||
/// Run the full mesh peering strategy.
|
||||
/// This future exits when the `must_exit` watch becomes true.
|
||||
pub async fn run(self: Arc<Self>, must_exit: watch::Receiver<bool>) {
|
||||
while !*must_exit.borrow() {
|
||||
pub async fn run(self: Arc<Self>) {
|
||||
loop {
|
||||
// 1. Read current state: get list of connected peers (ping them)
|
||||
let (to_ping, to_retry) = {
|
||||
let known_hosts = self.known_hosts.read().unwrap();
|
||||
trace!("known_hosts: {} peers", known_hosts.list.len());
|
||||
debug!("known_hosts: {} peers", known_hosts.list.len());
|
||||
|
||||
let mut to_ping = vec![];
|
||||
let mut to_retry = vec![];
|
||||
for (id, info) in known_hosts.list.iter() {
|
||||
trace!("{}, {:?}", hex::encode(&id[..8]), info);
|
||||
debug!("{}, {:?}", hex::encode(id), info);
|
||||
match info.state {
|
||||
PeerConnState::Connected => {
|
||||
let must_ping = match info.last_send_ping {
|
||||
let must_ping = match info.last_seen {
|
||||
None => true,
|
||||
Some(t) => Instant::now() - t > PING_INTERVAL,
|
||||
};
|
||||
|
@ -281,17 +217,10 @@ impl FullMeshPeeringStrategy {
|
|||
};
|
||||
|
||||
// 2. Dispatch ping to hosts
|
||||
trace!("to_ping: {} peers", to_ping.len());
|
||||
if !to_ping.is_empty() {
|
||||
let mut known_hosts = self.known_hosts.write().unwrap();
|
||||
for id in to_ping.iter() {
|
||||
known_hosts.list.get_mut(id).unwrap().last_send_ping = Some(Instant::now());
|
||||
}
|
||||
drop(known_hosts);
|
||||
trace!("to_ping: {} peers", to_retry.len());
|
||||
for id in to_ping {
|
||||
tokio::spawn(self.clone().ping(id));
|
||||
}
|
||||
}
|
||||
|
||||
// 3. Try reconnects
|
||||
trace!("to_retry: {} peers", to_retry.len());
|
||||
|
@ -302,27 +231,15 @@ impl FullMeshPeeringStrategy {
|
|||
if let PeerConnState::Waiting(i, _) = h.state {
|
||||
info!(
|
||||
"Retrying connection to {} at {} ({})",
|
||||
hex::encode(&id[..8]),
|
||||
h.all_addrs
|
||||
.iter()
|
||||
.map(|x| format!("{}", x))
|
||||
.collect::<Vec<_>>()
|
||||
.join(", "),
|
||||
hex::encode(&id),
|
||||
h.addr,
|
||||
i + 1
|
||||
);
|
||||
h.state = PeerConnState::Trying(i);
|
||||
|
||||
let alternate_addrs = h
|
||||
.all_addrs
|
||||
.iter()
|
||||
.filter(|x| **x != h.addr)
|
||||
.cloned()
|
||||
.collect::<Vec<_>>();
|
||||
tokio::spawn(self.clone().try_connect(id, h.addr, alternate_addrs));
|
||||
tokio::spawn(self.clone().try_connect(id, h.addr));
|
||||
}
|
||||
}
|
||||
}
|
||||
self.update_public_peer_list(&known_hosts);
|
||||
}
|
||||
|
||||
// 4. Sleep before next loop iteration
|
||||
|
@ -330,26 +247,125 @@ impl FullMeshPeeringStrategy {
|
|||
}
|
||||
}
|
||||
|
||||
/// Returns a list of currently known peers in the network.
|
||||
pub fn get_peer_list(&self) -> Arc<Vec<PeerInfo>> {
|
||||
self.public_peer_list.load_full()
|
||||
async fn ping(self: Arc<Self>, id: NodeID) {
|
||||
let peer_list_hash = self.known_hosts.read().unwrap().hash;
|
||||
let ping_id = self.next_ping_id.fetch_add(1u64, atomic::Ordering::Relaxed);
|
||||
let ping_time = Instant::now();
|
||||
let ping_msg = PingMessage {
|
||||
id: ping_id,
|
||||
peer_list_hash,
|
||||
};
|
||||
|
||||
debug!(
|
||||
"Sending ping {} to {} at {:?}",
|
||||
ping_id,
|
||||
hex::encode(id),
|
||||
ping_time
|
||||
);
|
||||
match self.netapp.request(&id, ping_msg, PRIO_HIGH).await {
|
||||
Err(e) => warn!("Error pinging {}: {}", hex::encode(id), e),
|
||||
Ok(ping_resp) => {
|
||||
let resp_time = Instant::now();
|
||||
debug!(
|
||||
"Got ping response from {} at {:?}",
|
||||
hex::encode(id),
|
||||
resp_time
|
||||
);
|
||||
{
|
||||
let mut known_hosts = self.known_hosts.write().unwrap();
|
||||
if let Some(host) = known_hosts.list.get_mut(&id) {
|
||||
host.last_seen = Some(resp_time);
|
||||
host.ping.push_back(resp_time - ping_time);
|
||||
while host.ping.len() > 10 {
|
||||
host.ping.pop_front();
|
||||
}
|
||||
}
|
||||
}
|
||||
if ping_resp.peer_list_hash != peer_list_hash {
|
||||
self.exchange_peers(&id).await;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Set the timeout for ping messages, in milliseconds
|
||||
pub fn set_ping_timeout_millis(&self, timeout: u64) {
|
||||
self.ping_timeout_millis
|
||||
.store(timeout, atomic::Ordering::Relaxed);
|
||||
async fn exchange_peers(self: Arc<Self>, id: &NodeID) {
|
||||
let peer_list = KnownHosts::map_into_vec(&self.known_hosts.read().unwrap().list);
|
||||
let pex_message = PeerListMessage { list: peer_list };
|
||||
match self.netapp.request(id, pex_message, PRIO_BACKGROUND).await {
|
||||
Err(e) => warn!("Error doing peer exchange: {}", e),
|
||||
Ok(resp) => {
|
||||
self.handle_peer_list(&resp.list[..]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// -- internal stuff --
|
||||
fn handle_peer_list(&self, list: &[(NodeID, SocketAddr)]) {
|
||||
let mut known_hosts = self.known_hosts.write().unwrap();
|
||||
for (id, addr) in list.iter() {
|
||||
if !known_hosts.list.contains_key(id) {
|
||||
known_hosts.list.insert(*id, self.new_peer(id, *addr));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn update_public_peer_list(&self, known_hosts: &KnownHosts) {
|
||||
let mut pub_peer_list = Vec::with_capacity(known_hosts.list.len());
|
||||
async fn try_connect(self: Arc<Self>, id: NodeID, addr: SocketAddr) {
|
||||
let conn_result = self.netapp.clone().try_connect(addr, id).await;
|
||||
if let Err(e) = conn_result {
|
||||
warn!("Error connecting to {}: {}", hex::encode(id), e);
|
||||
let mut known_hosts = self.known_hosts.write().unwrap();
|
||||
if let Some(host) = known_hosts.list.get_mut(&id) {
|
||||
host.state = match host.state {
|
||||
PeerConnState::Trying(i) => {
|
||||
if i >= CONN_MAX_RETRIES {
|
||||
PeerConnState::Abandonned
|
||||
} else {
|
||||
PeerConnState::Waiting(i + 1, Instant::now() + CONN_RETRY_INTERVAL)
|
||||
}
|
||||
}
|
||||
_ => PeerConnState::Waiting(0, Instant::now() + CONN_RETRY_INTERVAL),
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
async fn on_connected(self: Arc<Self>, id: NodeID, addr: SocketAddr, is_incoming: bool) {
|
||||
if is_incoming {
|
||||
if !self.known_hosts.read().unwrap().list.contains_key(&id) {
|
||||
self.known_hosts
|
||||
.write()
|
||||
.unwrap()
|
||||
.list
|
||||
.insert(id, self.new_peer(&id, addr));
|
||||
}
|
||||
} else {
|
||||
info!("Successfully connected to {} at {}", hex::encode(&id), addr);
|
||||
let mut known_hosts = self.known_hosts.write().unwrap();
|
||||
if let Some(host) = known_hosts.list.get_mut(&id) {
|
||||
host.state = PeerConnState::Connected;
|
||||
known_hosts.update_hash();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
async fn on_disconnected(self: Arc<Self>, id: NodeID, is_incoming: bool) {
|
||||
if !is_incoming {
|
||||
info!("Connection to {} was closed", hex::encode(id));
|
||||
let mut known_hosts = self.known_hosts.write().unwrap();
|
||||
if let Some(host) = known_hosts.list.get_mut(&id) {
|
||||
host.state = PeerConnState::Waiting(0, Instant::now());
|
||||
known_hosts.update_hash();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_peer_list(&self) -> Vec<PeerInfoPub> {
|
||||
let known_hosts = self.known_hosts.read().unwrap();
|
||||
let mut ret = Vec::with_capacity(known_hosts.list.len());
|
||||
for (id, info) in known_hosts.list.iter() {
|
||||
let mut pings = info.ping.iter().cloned().collect::<Vec<_>>();
|
||||
pings.sort();
|
||||
if !pings.is_empty() {
|
||||
pub_peer_list.push(PeerInfo {
|
||||
ret.push(PeerInfoPub {
|
||||
id: *id,
|
||||
addr: info.addr,
|
||||
state: info.state,
|
||||
|
@ -364,7 +380,7 @@ impl FullMeshPeeringStrategy {
|
|||
med_ping: Some(pings[pings.len() / 2]),
|
||||
});
|
||||
} else {
|
||||
pub_peer_list.push(PeerInfo {
|
||||
ret.push(PeerInfoPub {
|
||||
id: *id,
|
||||
addr: info.addr,
|
||||
state: info.state,
|
||||
|
@ -375,239 +391,20 @@ impl FullMeshPeeringStrategy {
|
|||
});
|
||||
}
|
||||
}
|
||||
self.public_peer_list.store(Arc::new(pub_peer_list));
|
||||
}
|
||||
|
||||
async fn ping(self: Arc<Self>, id: NodeID) {
|
||||
let peer_list_hash = self.known_hosts.read().unwrap().hash;
|
||||
let ping_id = self.next_ping_id.fetch_add(1u64, atomic::Ordering::Relaxed);
|
||||
let ping_time = Instant::now();
|
||||
let ping_timeout =
|
||||
Duration::from_millis(self.ping_timeout_millis.load(atomic::Ordering::Relaxed));
|
||||
let ping_msg = PingMessage {
|
||||
id: ping_id,
|
||||
peer_list_hash,
|
||||
};
|
||||
|
||||
debug!(
|
||||
"Sending ping {} to {} at {:?}",
|
||||
ping_id,
|
||||
hex::encode(&id[..8]),
|
||||
ping_time
|
||||
);
|
||||
let ping_response = select! {
|
||||
r = self.ping_endpoint.call(&id, ping_msg, PRIO_HIGH) => r,
|
||||
_ = tokio::time::sleep(ping_timeout) => Err(Error::Message("Ping timeout".into())),
|
||||
};
|
||||
|
||||
match ping_response {
|
||||
Err(e) => {
|
||||
warn!("Error pinging {}: {}", hex::encode(&id[..8]), e);
|
||||
let mut known_hosts = self.known_hosts.write().unwrap();
|
||||
if let Some(host) = known_hosts.list.get_mut(&id) {
|
||||
host.failed_pings += 1;
|
||||
if host.failed_pings > FAILED_PING_THRESHOLD {
|
||||
warn!(
|
||||
"Too many failed pings from {}, closing connection.",
|
||||
hex::encode(&id[..8])
|
||||
);
|
||||
// this will later update info in known_hosts
|
||||
// through the disconnection handler
|
||||
self.netapp.disconnect(&id);
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(ping_resp) => {
|
||||
let resp_time = Instant::now();
|
||||
debug!(
|
||||
"Got ping response from {} at {:?}",
|
||||
hex::encode(&id[..8]),
|
||||
resp_time
|
||||
);
|
||||
{
|
||||
let mut known_hosts = self.known_hosts.write().unwrap();
|
||||
if let Some(host) = known_hosts.list.get_mut(&id) {
|
||||
host.failed_pings = 0;
|
||||
host.last_seen = Some(resp_time);
|
||||
host.ping.push_back(resp_time - ping_time);
|
||||
while host.ping.len() > 10 {
|
||||
host.ping.pop_front();
|
||||
}
|
||||
self.update_public_peer_list(&known_hosts);
|
||||
}
|
||||
}
|
||||
if ping_resp.peer_list_hash != peer_list_hash {
|
||||
self.exchange_peers(&id).await;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
async fn exchange_peers(self: Arc<Self>, id: &NodeID) {
|
||||
let peer_list = KnownHosts::map_into_vec(&self.known_hosts.read().unwrap().list);
|
||||
let pex_message = PeerListMessage { list: peer_list };
|
||||
match self
|
||||
.peer_list_endpoint
|
||||
.call(id, pex_message, PRIO_BACKGROUND)
|
||||
.await
|
||||
{
|
||||
Err(e) => warn!("Error doing peer exchange: {}", e),
|
||||
Ok(resp) => {
|
||||
self.handle_peer_list(&resp.list[..]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn handle_peer_list(&self, list: &[(NodeID, SocketAddr)]) {
|
||||
let mut known_hosts = self.known_hosts.write().unwrap();
|
||||
|
||||
let mut changed = false;
|
||||
for (id, addr) in list.iter() {
|
||||
if let Some(kh) = known_hosts.list.get_mut(id) {
|
||||
if !kh.all_addrs.contains(addr) {
|
||||
kh.all_addrs.push(*addr);
|
||||
changed = true;
|
||||
}
|
||||
} else {
|
||||
known_hosts.list.insert(*id, self.new_peer(id, *addr));
|
||||
changed = true;
|
||||
}
|
||||
}
|
||||
|
||||
if changed {
|
||||
known_hosts.update_hash();
|
||||
self.update_public_peer_list(&known_hosts);
|
||||
}
|
||||
}
|
||||
|
||||
async fn try_connect(
|
||||
self: Arc<Self>,
|
||||
id: NodeID,
|
||||
default_addr: SocketAddr,
|
||||
alternate_addrs: Vec<SocketAddr>,
|
||||
) {
|
||||
let conn_addr = {
|
||||
let mut ret = None;
|
||||
for addr in [default_addr].iter().chain(alternate_addrs.iter()) {
|
||||
debug!("Trying address {} for peer {}", addr, hex::encode(&id[..8]));
|
||||
match self.netapp.clone().try_connect(*addr, id).await {
|
||||
Ok(()) => {
|
||||
ret = Some(*addr);
|
||||
break;
|
||||
}
|
||||
Err(e) => {
|
||||
debug!(
|
||||
"Error connecting to {} at {}: {}",
|
||||
hex::encode(&id[..8]),
|
||||
addr,
|
||||
e
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
ret
|
||||
};
|
||||
|
||||
if let Some(ok_addr) = conn_addr {
|
||||
self.on_connected(id, ok_addr, false);
|
||||
} else {
|
||||
warn!(
|
||||
"Could not connect to peer {} ({} addresses tried)",
|
||||
hex::encode(&id[..8]),
|
||||
1 + alternate_addrs.len()
|
||||
);
|
||||
let mut known_hosts = self.known_hosts.write().unwrap();
|
||||
if let Some(host) = known_hosts.list.get_mut(&id) {
|
||||
host.state = match host.state {
|
||||
PeerConnState::Trying(i) => {
|
||||
if i >= CONN_MAX_RETRIES {
|
||||
PeerConnState::Abandonned
|
||||
} else {
|
||||
PeerConnState::Waiting(i + 1, Instant::now() + CONN_RETRY_INTERVAL)
|
||||
}
|
||||
}
|
||||
_ => PeerConnState::Waiting(0, Instant::now() + CONN_RETRY_INTERVAL),
|
||||
};
|
||||
self.update_public_peer_list(&known_hosts);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn on_connected(self: Arc<Self>, id: NodeID, addr: SocketAddr, is_incoming: bool) {
|
||||
let mut known_hosts = self.known_hosts.write().unwrap();
|
||||
if is_incoming {
|
||||
if let Some(host) = known_hosts.list.get_mut(&id) {
|
||||
if !host.all_addrs.contains(&addr) {
|
||||
host.all_addrs.push(addr);
|
||||
}
|
||||
} else {
|
||||
known_hosts.list.insert(id, self.new_peer(&id, addr));
|
||||
}
|
||||
} else {
|
||||
info!(
|
||||
"Successfully connected to {} at {}",
|
||||
hex::encode(&id[..8]),
|
||||
addr
|
||||
);
|
||||
if let Some(host) = known_hosts.list.get_mut(&id) {
|
||||
host.state = PeerConnState::Connected;
|
||||
host.addr = addr;
|
||||
if !host.all_addrs.contains(&addr) {
|
||||
host.all_addrs.push(addr);
|
||||
}
|
||||
} else {
|
||||
known_hosts
|
||||
.list
|
||||
.insert(id, PeerInfoInternal::new(addr, PeerConnState::Connected));
|
||||
}
|
||||
}
|
||||
known_hosts.update_hash();
|
||||
self.update_public_peer_list(&known_hosts);
|
||||
}
|
||||
|
||||
fn on_disconnected(self: Arc<Self>, id: NodeID, is_incoming: bool) {
|
||||
if !is_incoming {
|
||||
info!("Connection to {} was closed", hex::encode(&id[..8]));
|
||||
let mut known_hosts = self.known_hosts.write().unwrap();
|
||||
if let Some(host) = known_hosts.list.get_mut(&id) {
|
||||
host.state = PeerConnState::Waiting(0, Instant::now());
|
||||
known_hosts.update_hash();
|
||||
self.update_public_peer_list(&known_hosts);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn new_peer(&self, id: &NodeID, addr: SocketAddr) -> PeerInfoInternal {
|
||||
fn new_peer(&self, id: &NodeID, addr: SocketAddr) -> PeerInfo {
|
||||
let state = if *id == self.netapp.id {
|
||||
PeerConnState::Ourself
|
||||
} else {
|
||||
PeerConnState::Waiting(0, Instant::now())
|
||||
};
|
||||
PeerInfoInternal::new(addr, state)
|
||||
PeerInfo {
|
||||
addr,
|
||||
state,
|
||||
last_seen: None,
|
||||
ping: VecDeque::new(),
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
impl EndpointHandler<PingMessage> for FullMeshPeeringStrategy {
|
||||
async fn handle(self: &Arc<Self>, ping: &PingMessage, from: NodeID) -> PingMessage {
|
||||
let ping_resp = PingMessage {
|
||||
id: ping.id,
|
||||
peer_list_hash: self.known_hosts.read().unwrap().hash,
|
||||
};
|
||||
debug!("Ping from {}", hex::encode(&from[..8]));
|
||||
ping_resp
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
impl EndpointHandler<PeerListMessage> for FullMeshPeeringStrategy {
|
||||
async fn handle(
|
||||
self: &Arc<Self>,
|
||||
peer_list: &PeerListMessage,
|
||||
_from: NodeID,
|
||||
) -> PeerListMessage {
|
||||
self.handle_peer_list(&peer_list.list[..]);
|
||||
let peer_list = KnownHosts::map_into_vec(&self.known_hosts.read().unwrap().list);
|
||||
PeerListMessage { list: peer_list }
|
||||
}
|
||||
}
|
||||
|
|
204
src/proto.rs
Normal file
204
src/proto.rs
Normal file
|
@ -0,0 +1,204 @@
|
|||
use std::collections::{HashMap, VecDeque};
|
||||
use std::sync::Arc;
|
||||
|
||||
use log::trace;
|
||||
|
||||
use futures::{AsyncReadExt, AsyncWriteExt};
|
||||
|
||||
use tokio::sync::mpsc;
|
||||
|
||||
use async_trait::async_trait;
|
||||
|
||||
use crate::error::*;
|
||||
|
||||
/// Priority of a request (click to read more about priorities).
|
||||
///
|
||||
/// This priority value is used to priorize messages
|
||||
/// in the send queue of the client, and their responses in the send queue of the
|
||||
/// server. Lower values mean higher priority.
|
||||
///
|
||||
/// This mechanism is usefull for messages bigger than the maximum chunk size
|
||||
/// (set at `0x4000` bytes), such as large file transfers.
|
||||
/// In such case, all of the messages in the send queue with the highest priority
|
||||
/// will take turns to send individual chunks, in a round-robin fashion.
|
||||
/// Once all highest priority messages are sent successfully, the messages with
|
||||
/// the next highest priority will begin being sent in the same way.
|
||||
///
|
||||
/// The same priority value is given to a request and to its associated response.
|
||||
pub type RequestPriority = u8;
|
||||
|
||||
/// Priority class: high
|
||||
pub const PRIO_HIGH: RequestPriority = 0x20;
|
||||
/// Priority class: normal
|
||||
pub const PRIO_NORMAL: RequestPriority = 0x40;
|
||||
/// Priority class: background
|
||||
pub const PRIO_BACKGROUND: RequestPriority = 0x80;
|
||||
/// Priority: primary among given class
|
||||
pub const PRIO_PRIMARY: RequestPriority = 0x00;
|
||||
/// Priority: secondary among given class (ex: `PRIO_HIGH | PRIO_SECONDARY`)
|
||||
pub const PRIO_SECONDARY: RequestPriority = 0x01;
|
||||
|
||||
const MAX_CHUNK_SIZE: usize = 0x4000;
|
||||
|
||||
pub(crate) type RequestID = u16;
|
||||
|
||||
struct SendQueueItem {
|
||||
id: RequestID,
|
||||
prio: RequestPriority,
|
||||
data: Vec<u8>,
|
||||
cursor: usize,
|
||||
}
|
||||
|
||||
struct SendQueue {
|
||||
items: VecDeque<(u8, VecDeque<SendQueueItem>)>,
|
||||
}
|
||||
|
||||
impl SendQueue {
|
||||
fn new() -> Self {
|
||||
Self {
|
||||
items: VecDeque::with_capacity(64),
|
||||
}
|
||||
}
|
||||
fn push(&mut self, item: SendQueueItem) {
|
||||
let prio = item.prio;
|
||||
let pos_prio = match self.items.binary_search_by(|(p, _)| p.cmp(&prio)) {
|
||||
Ok(i) => i,
|
||||
Err(i) => {
|
||||
self.items.insert(i, (prio, VecDeque::new()));
|
||||
i
|
||||
}
|
||||
};
|
||||
self.items[pos_prio].1.push_back(item);
|
||||
}
|
||||
fn pop(&mut self) -> Option<SendQueueItem> {
|
||||
match self.items.pop_front() {
|
||||
None => None,
|
||||
Some((prio, mut items_at_prio)) => {
|
||||
let ret = items_at_prio.pop_front();
|
||||
if !items_at_prio.is_empty() {
|
||||
self.items.push_front((prio, items_at_prio));
|
||||
}
|
||||
ret.or_else(|| self.pop())
|
||||
}
|
||||
}
|
||||
}
|
||||
fn is_empty(&self) -> bool {
|
||||
self.items.iter().all(|(_k, v)| v.is_empty())
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
pub(crate) trait SendLoop: Sync {
|
||||
async fn send_loop<W>(
|
||||
self: Arc<Self>,
|
||||
mut msg_recv: mpsc::UnboundedReceiver<Option<(RequestID, RequestPriority, Vec<u8>)>>,
|
||||
mut write: W,
|
||||
) -> Result<(), Error>
|
||||
where
|
||||
W: AsyncWriteExt + Unpin + Send + Sync,
|
||||
{
|
||||
let mut sending = SendQueue::new();
|
||||
let mut should_exit = false;
|
||||
while !should_exit || !sending.is_empty() {
|
||||
if let Ok(sth) = msg_recv.try_recv() {
|
||||
if let Some((id, prio, data)) = sth {
|
||||
trace!("send_loop: got {}, {} bytes", id, data.len());
|
||||
sending.push(SendQueueItem {
|
||||
id,
|
||||
prio,
|
||||
data,
|
||||
cursor: 0,
|
||||
});
|
||||
} else {
|
||||
should_exit = true;
|
||||
}
|
||||
} else if let Some(mut item) = sending.pop() {
|
||||
trace!(
|
||||
"send_loop: sending bytes for {} ({} bytes, {} already sent)",
|
||||
item.id,
|
||||
item.data.len(),
|
||||
item.cursor
|
||||
);
|
||||
let header_id = u16::to_be_bytes(item.id);
|
||||
write.write_all(&header_id[..]).await?;
|
||||
|
||||
if item.data.len() - item.cursor > MAX_CHUNK_SIZE {
|
||||
let header_size = u16::to_be_bytes(MAX_CHUNK_SIZE as u16 | 0x8000);
|
||||
write.write_all(&header_size[..]).await?;
|
||||
|
||||
let new_cursor = item.cursor + MAX_CHUNK_SIZE as usize;
|
||||
write.write_all(&item.data[item.cursor..new_cursor]).await?;
|
||||
item.cursor = new_cursor;
|
||||
|
||||
sending.push(item);
|
||||
} else {
|
||||
let send_len = (item.data.len() - item.cursor) as u16;
|
||||
|
||||
let header_size = u16::to_be_bytes(send_len);
|
||||
write.write_all(&header_size[..]).await?;
|
||||
|
||||
write.write_all(&item.data[item.cursor..]).await?;
|
||||
}
|
||||
write.flush().await?;
|
||||
} else {
|
||||
let sth = msg_recv
|
||||
.recv()
|
||||
.await
|
||||
.ok_or_else(|| Error::Message("Connection closed.".into()))?;
|
||||
if let Some((id, prio, data)) = sth {
|
||||
trace!("send_loop: got {}, {} bytes", id, data.len());
|
||||
sending.push(SendQueueItem {
|
||||
id,
|
||||
prio,
|
||||
data,
|
||||
cursor: 0,
|
||||
});
|
||||
} else {
|
||||
should_exit = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
pub(crate) trait RecvLoop: Sync + 'static {
|
||||
// Returns true if we should stop receiving after this
|
||||
async fn recv_handler(self: Arc<Self>, id: RequestID, msg: Vec<u8>);
|
||||
|
||||
async fn recv_loop<R>(self: Arc<Self>, mut read: R) -> Result<(), Error>
|
||||
where
|
||||
R: AsyncReadExt + Unpin + Send + Sync,
|
||||
{
|
||||
let mut receiving = HashMap::new();
|
||||
loop {
|
||||
trace!("recv_loop: reading packet");
|
||||
let mut header_id = [0u8; 2];
|
||||
read.read_exact(&mut header_id[..]).await?;
|
||||
let id = RequestID::from_be_bytes(header_id);
|
||||
trace!("recv_loop: got header id: {:04x}", id);
|
||||
|
||||
let mut header_size = [0u8; 2];
|
||||
read.read_exact(&mut header_size[..]).await?;
|
||||
let size = RequestID::from_be_bytes(header_size);
|
||||
trace!("recv_loop: got header size: {:04x}", size);
|
||||
|
||||
let has_cont = (size & 0x8000) != 0;
|
||||
let size = size & !0x8000;
|
||||
|
||||
let mut next_slice = vec![0; size as usize];
|
||||
read.read_exact(&mut next_slice[..]).await?;
|
||||
trace!("recv_loop: read {} bytes", next_slice.len());
|
||||
|
||||
let mut msg_bytes: Vec<_> = receiving.remove(&id).unwrap_or_default();
|
||||
msg_bytes.extend_from_slice(&next_slice[..]);
|
||||
|
||||
if has_cont {
|
||||
receiving.insert(id, msg_bytes);
|
||||
} else {
|
||||
tokio::spawn(self.clone().recv_handler(id, msg_bytes));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
153
src/recv.rs
153
src/recv.rs
|
@ -1,153 +0,0 @@
|
|||
use std::collections::HashMap;
|
||||
use std::sync::Arc;
|
||||
|
||||
use async_trait::async_trait;
|
||||
use bytes::Bytes;
|
||||
use log::*;
|
||||
|
||||
use futures::AsyncReadExt;
|
||||
use tokio::sync::mpsc;
|
||||
|
||||
use crate::error::*;
|
||||
use crate::send::*;
|
||||
use crate::stream::*;
|
||||
|
||||
/// Structure to warn when the sender is dropped before end of stream was reached, like when
|
||||
/// connection to some remote drops while transmitting data
|
||||
struct Sender {
|
||||
inner: Option<mpsc::UnboundedSender<Packet>>,
|
||||
}
|
||||
|
||||
impl Sender {
|
||||
fn new(inner: mpsc::UnboundedSender<Packet>) -> Self {
|
||||
Sender { inner: Some(inner) }
|
||||
}
|
||||
|
||||
fn send(&self, packet: Packet) {
|
||||
let _ = self.inner.as_ref().unwrap().send(packet);
|
||||
}
|
||||
|
||||
fn end(&mut self) {
|
||||
self.inner = None;
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for Sender {
|
||||
fn drop(&mut self) {
|
||||
if let Some(inner) = self.inner.take() {
|
||||
let _ = inner.send(Err(std::io::Error::new(
|
||||
std::io::ErrorKind::BrokenPipe,
|
||||
"Netapp connection dropped before end of stream",
|
||||
)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// The RecvLoop trait, which is implemented both by the client and the server
|
||||
/// connection objects (ServerConn and ClientConn) adds a method `.recv_loop()`
|
||||
/// and a prototype of a handler for received messages `.recv_handler()` that
|
||||
/// must be filled by implementors. `.recv_loop()` receives messages in a loop
|
||||
/// according to the protocol defined above: chunks of message in progress of being
|
||||
/// received are stored in a buffer, and when the last chunk of a message is received,
|
||||
/// the full message is passed to the receive handler.
|
||||
#[async_trait]
|
||||
pub(crate) trait RecvLoop: Sync + 'static {
|
||||
fn recv_handler(self: &Arc<Self>, id: RequestID, stream: ByteStream);
|
||||
fn cancel_handler(self: &Arc<Self>, _id: RequestID) {}
|
||||
|
||||
async fn recv_loop<R>(self: Arc<Self>, mut read: R, debug_name: String) -> Result<(), Error>
|
||||
where
|
||||
R: AsyncReadExt + Unpin + Send + Sync,
|
||||
{
|
||||
let mut streams: HashMap<RequestID, Sender> = HashMap::new();
|
||||
loop {
|
||||
trace!(
|
||||
"recv_loop({}): in_progress = {:?}",
|
||||
debug_name,
|
||||
streams.iter().map(|(id, _)| id).collect::<Vec<_>>()
|
||||
);
|
||||
|
||||
let mut header_id = [0u8; RequestID::BITS as usize / 8];
|
||||
match read.read_exact(&mut header_id[..]).await {
|
||||
Ok(_) => (),
|
||||
Err(e) if e.kind() == std::io::ErrorKind::UnexpectedEof => break,
|
||||
Err(e) => return Err(e.into()),
|
||||
};
|
||||
let id = RequestID::from_be_bytes(header_id);
|
||||
|
||||
let mut header_size = [0u8; ChunkLength::BITS as usize / 8];
|
||||
read.read_exact(&mut header_size[..]).await?;
|
||||
let size = ChunkLength::from_be_bytes(header_size);
|
||||
|
||||
if size == CANCEL_REQUEST {
|
||||
if let Some(mut stream) = streams.remove(&id) {
|
||||
let _ = stream.send(Err(std::io::Error::new(
|
||||
std::io::ErrorKind::Other,
|
||||
"netapp: cancel requested",
|
||||
)));
|
||||
stream.end();
|
||||
}
|
||||
self.cancel_handler(id);
|
||||
continue;
|
||||
}
|
||||
|
||||
let has_cont = (size & CHUNK_FLAG_HAS_CONTINUATION) != 0;
|
||||
let is_error = (size & CHUNK_FLAG_ERROR) != 0;
|
||||
let size = (size & CHUNK_LENGTH_MASK) as usize;
|
||||
let mut next_slice = vec![0; size as usize];
|
||||
read.read_exact(&mut next_slice[..]).await?;
|
||||
|
||||
let packet = if is_error {
|
||||
let kind = u8_to_io_errorkind(next_slice[0]);
|
||||
let msg =
|
||||
std::str::from_utf8(&next_slice[1..]).unwrap_or("<invalid utf8 error message>");
|
||||
debug!(
|
||||
"recv_loop({}): got id {}, error {:?}: {}",
|
||||
debug_name, id, kind, msg
|
||||
);
|
||||
Some(Err(std::io::Error::new(kind, msg.to_string())))
|
||||
} else {
|
||||
trace!(
|
||||
"recv_loop({}): got id {}, size {}, has_cont {}",
|
||||
debug_name,
|
||||
id,
|
||||
size,
|
||||
has_cont
|
||||
);
|
||||
if !next_slice.is_empty() {
|
||||
Some(Ok(Bytes::from(next_slice)))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
};
|
||||
|
||||
let mut sender = if let Some(send) = streams.remove(&(id)) {
|
||||
send
|
||||
} else {
|
||||
let (send, recv) = mpsc::unbounded_channel();
|
||||
trace!("recv_loop({}): id {} is new channel", debug_name, id);
|
||||
self.recv_handler(
|
||||
id,
|
||||
Box::pin(tokio_stream::wrappers::UnboundedReceiverStream::new(recv)),
|
||||
);
|
||||
Sender::new(send)
|
||||
};
|
||||
|
||||
if let Some(packet) = packet {
|
||||
// If we cannot put packet in channel, it means that the
|
||||
// receiving end of the channel is disconnected.
|
||||
// We still need to reach eos before dropping this sender
|
||||
let _ = sender.send(packet);
|
||||
}
|
||||
|
||||
if has_cont {
|
||||
assert!(!is_error);
|
||||
streams.insert(id, sender);
|
||||
} else {
|
||||
trace!("recv_loop({}): close channel id {}", debug_name, id);
|
||||
sender.end();
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
356
src/send.rs
356
src/send.rs
|
@ -1,356 +0,0 @@
|
|||
use std::collections::{HashMap, VecDeque};
|
||||
use std::pin::Pin;
|
||||
use std::sync::Arc;
|
||||
use std::task::{Context, Poll};
|
||||
|
||||
use async_trait::async_trait;
|
||||
use bytes::{BufMut, Bytes, BytesMut};
|
||||
use log::*;
|
||||
|
||||
use futures::{AsyncWriteExt, Future};
|
||||
use kuska_handshake::async_std::BoxStreamWrite;
|
||||
use tokio::sync::mpsc;
|
||||
|
||||
use crate::error::*;
|
||||
use crate::message::*;
|
||||
use crate::stream::*;
|
||||
|
||||
// Messages are sent by chunks
|
||||
// Chunk format:
|
||||
// - u32 BE: request id (same for request and response)
|
||||
// - u16 BE: chunk length + flags:
|
||||
// CHUNK_FLAG_HAS_CONTINUATION when this is not the last chunk of the stream
|
||||
// CHUNK_FLAG_ERROR if this chunk denotes an error
|
||||
// (these two flags are exclusive, an error denotes the end of the stream)
|
||||
// **special value** 0xFFFF indicates a CANCEL message
|
||||
// - [u8; chunk_length], either
|
||||
// - if not error: chunk data
|
||||
// - if error:
|
||||
// - u8: error kind, encoded using error::io_errorkind_to_u8
|
||||
// - rest: error message
|
||||
// - absent for cancel messag
|
||||
|
||||
pub(crate) type RequestID = u32;
|
||||
pub(crate) type ChunkLength = u16;
|
||||
|
||||
pub(crate) const MAX_CHUNK_LENGTH: ChunkLength = 0x3FF0;
|
||||
pub(crate) const CHUNK_FLAG_ERROR: ChunkLength = 0x4000;
|
||||
pub(crate) const CHUNK_FLAG_HAS_CONTINUATION: ChunkLength = 0x8000;
|
||||
pub(crate) const CHUNK_LENGTH_MASK: ChunkLength = 0x3FFF;
|
||||
pub(crate) const CANCEL_REQUEST: ChunkLength = 0xFFFF;
|
||||
|
||||
pub(crate) enum SendItem {
|
||||
Stream(RequestID, RequestPriority, Option<OrderTag>, ByteStream),
|
||||
Cancel(RequestID),
|
||||
}
|
||||
|
||||
// ----
|
||||
|
||||
struct SendQueue {
|
||||
items: Vec<(u8, SendQueuePriority)>,
|
||||
}
|
||||
|
||||
struct SendQueuePriority {
|
||||
items: VecDeque<SendQueueItem>,
|
||||
order: HashMap<u64, VecDeque<u64>>,
|
||||
}
|
||||
|
||||
struct SendQueueItem {
|
||||
id: RequestID,
|
||||
prio: RequestPriority,
|
||||
order_tag: Option<OrderTag>,
|
||||
data: ByteStreamReader,
|
||||
sent: usize,
|
||||
}
|
||||
|
||||
impl SendQueue {
|
||||
fn new() -> Self {
|
||||
Self {
|
||||
items: Vec::with_capacity(64),
|
||||
}
|
||||
}
|
||||
fn push(&mut self, item: SendQueueItem) {
|
||||
let prio = item.prio;
|
||||
let pos_prio = match self.items.binary_search_by(|(p, _)| p.cmp(&prio)) {
|
||||
Ok(i) => i,
|
||||
Err(i) => {
|
||||
self.items.insert(i, (prio, SendQueuePriority::new()));
|
||||
i
|
||||
}
|
||||
};
|
||||
self.items[pos_prio].1.push(item);
|
||||
}
|
||||
fn remove(&mut self, id: RequestID) {
|
||||
for (_, prioq) in self.items.iter_mut() {
|
||||
prioq.remove(id);
|
||||
}
|
||||
self.items.retain(|(_prio, q)| !q.is_empty());
|
||||
}
|
||||
fn is_empty(&self) -> bool {
|
||||
self.items.iter().all(|(_k, v)| v.is_empty())
|
||||
}
|
||||
|
||||
// this is like an async fn, but hand implemented
|
||||
fn next_ready(&mut self) -> SendQueuePollNextReady<'_> {
|
||||
SendQueuePollNextReady { queue: self }
|
||||
}
|
||||
}
|
||||
|
||||
impl SendQueuePriority {
|
||||
fn new() -> Self {
|
||||
Self {
|
||||
items: VecDeque::new(),
|
||||
order: HashMap::new(),
|
||||
}
|
||||
}
|
||||
fn push(&mut self, item: SendQueueItem) {
|
||||
if let Some(OrderTag(stream, order)) = item.order_tag {
|
||||
let order_vec = self.order.entry(stream).or_default();
|
||||
let i = order_vec.iter().take_while(|o2| **o2 < order).count();
|
||||
order_vec.insert(i, order);
|
||||
}
|
||||
self.items.push_front(item);
|
||||
}
|
||||
fn remove(&mut self, id: RequestID) {
|
||||
if let Some(i) = self.items.iter().position(|x| x.id == id) {
|
||||
let item = self.items.remove(i).unwrap();
|
||||
if let Some(OrderTag(stream, order)) = item.order_tag {
|
||||
let order_vec = self.order.get_mut(&stream).unwrap();
|
||||
let j = order_vec.iter().position(|x| *x == order).unwrap();
|
||||
order_vec.remove(j).unwrap();
|
||||
if order_vec.is_empty() {
|
||||
self.order.remove(&stream);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
fn is_empty(&self) -> bool {
|
||||
self.items.is_empty()
|
||||
}
|
||||
fn poll_next_ready(&mut self, ctx: &mut Context<'_>) -> Poll<(RequestID, DataFrame)> {
|
||||
for (j, item) in self.items.iter_mut().enumerate() {
|
||||
if let Some(OrderTag(stream, order)) = item.order_tag {
|
||||
if order > *self.order.get(&stream).unwrap().front().unwrap() {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
let mut item_reader = item.data.read_exact_or_eos(MAX_CHUNK_LENGTH as usize);
|
||||
if let Poll::Ready(bytes_or_err) = Pin::new(&mut item_reader).poll(ctx) {
|
||||
let id = item.id;
|
||||
let eos = item.data.eos();
|
||||
|
||||
let packet = bytes_or_err.map_err(|e| match e {
|
||||
ReadExactError::Stream(err) => err,
|
||||
_ => unreachable!(),
|
||||
});
|
||||
|
||||
let is_err = packet.is_err();
|
||||
let data_frame = DataFrame::from_packet(packet, !eos);
|
||||
item.sent += data_frame.data().len();
|
||||
|
||||
if eos || is_err {
|
||||
// If item had an order tag, remove it from the corresponding ordering list
|
||||
if let Some(OrderTag(stream, order)) = item.order_tag {
|
||||
let order_stream = self.order.get_mut(&stream).unwrap();
|
||||
assert_eq!(order_stream.pop_front(), Some(order));
|
||||
if order_stream.is_empty() {
|
||||
self.order.remove(&stream);
|
||||
}
|
||||
}
|
||||
// Remove item from sending queue
|
||||
self.items.remove(j);
|
||||
} else {
|
||||
// Move item later in send queue to implement LAS scheduling
|
||||
// (LAS = Least Attained Service)
|
||||
for k in j..self.items.len() - 1 {
|
||||
if self.items[k].sent >= self.items[k + 1].sent {
|
||||
self.items.swap(k, k + 1);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return Poll::Ready((id, data_frame));
|
||||
}
|
||||
}
|
||||
|
||||
Poll::Pending
|
||||
}
|
||||
fn dump(&self, prio: u8) -> String {
|
||||
self.items
|
||||
.iter()
|
||||
.map(|i| format!("[{} {} {:?} @{}]", prio, i.id, i.order_tag, i.sent))
|
||||
.collect::<Vec<_>>()
|
||||
.join(" ")
|
||||
}
|
||||
}
|
||||
|
||||
struct SendQueuePollNextReady<'a> {
|
||||
queue: &'a mut SendQueue,
|
||||
}
|
||||
|
||||
impl<'a> futures::Future for SendQueuePollNextReady<'a> {
|
||||
type Output = (RequestID, DataFrame);
|
||||
|
||||
fn poll(mut self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
|
||||
for (i, (_prio, items_at_prio)) in self.queue.items.iter_mut().enumerate() {
|
||||
if let Poll::Ready(res) = items_at_prio.poll_next_ready(ctx) {
|
||||
if items_at_prio.is_empty() {
|
||||
self.queue.items.remove(i);
|
||||
}
|
||||
return Poll::Ready(res);
|
||||
}
|
||||
}
|
||||
// If the queue is empty, this futures is eternally pending.
|
||||
// This is ok because we use it in a select with another future
|
||||
// that can interrupt it.
|
||||
Poll::Pending
|
||||
}
|
||||
}
|
||||
|
||||
enum DataFrame {
|
||||
/// a fixed size buffer containing some data + a boolean indicating whether
|
||||
/// there may be more data comming from this stream. Can be used for some
|
||||
/// optimization. It's an error to set it to false if there is more data, but it is correct
|
||||
/// (albeit sub-optimal) to set it to true if there is nothing coming after
|
||||
Data(Bytes, bool),
|
||||
/// An error code automatically signals the end of the stream
|
||||
Error(Bytes),
|
||||
}
|
||||
|
||||
impl DataFrame {
|
||||
fn from_packet(p: Packet, has_cont: bool) -> Self {
|
||||
match p {
|
||||
Ok(bytes) => {
|
||||
assert!(bytes.len() <= MAX_CHUNK_LENGTH as usize);
|
||||
Self::Data(bytes, has_cont)
|
||||
}
|
||||
Err(e) => {
|
||||
let mut buf = BytesMut::new();
|
||||
buf.put_u8(io_errorkind_to_u8(e.kind()));
|
||||
|
||||
let msg = format!("{}", e).into_bytes();
|
||||
if msg.len() > (MAX_CHUNK_LENGTH - 1) as usize {
|
||||
buf.put(&msg[..(MAX_CHUNK_LENGTH - 1) as usize]);
|
||||
} else {
|
||||
buf.put(&msg[..]);
|
||||
}
|
||||
|
||||
Self::Error(buf.freeze())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn header(&self) -> [u8; 2] {
|
||||
let header_u16 = match self {
|
||||
DataFrame::Data(data, false) => data.len() as u16,
|
||||
DataFrame::Data(data, true) => data.len() as u16 | CHUNK_FLAG_HAS_CONTINUATION,
|
||||
DataFrame::Error(msg) => msg.len() as u16 | CHUNK_FLAG_ERROR,
|
||||
};
|
||||
ChunkLength::to_be_bytes(header_u16)
|
||||
}
|
||||
|
||||
fn data(&self) -> &[u8] {
|
||||
match self {
|
||||
DataFrame::Data(ref data, _) => &data[..],
|
||||
DataFrame::Error(ref msg) => &msg[..],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// The SendLoop trait, which is implemented both by the client and the server
|
||||
/// connection objects (ServerConna and ClientConn) adds a method `.send_loop()`
|
||||
/// that takes a channel of messages to send and an asynchronous writer,
|
||||
/// and sends messages from the channel to the async writer, putting them in a queue
|
||||
/// before being sent and doing the round-robin sending strategy.
|
||||
///
|
||||
/// The `.send_loop()` exits when the sending end of the channel is closed,
|
||||
/// or if there is an error at any time writing to the async writer.
|
||||
#[async_trait]
|
||||
pub(crate) trait SendLoop: Sync {
|
||||
async fn send_loop<W>(
|
||||
self: Arc<Self>,
|
||||
msg_recv: mpsc::UnboundedReceiver<SendItem>,
|
||||
mut write: BoxStreamWrite<W>,
|
||||
debug_name: String,
|
||||
) -> Result<(), Error>
|
||||
where
|
||||
W: AsyncWriteExt + Unpin + Send + Sync,
|
||||
{
|
||||
let mut sending = SendQueue::new();
|
||||
let mut msg_recv = Some(msg_recv);
|
||||
while msg_recv.is_some() || !sending.is_empty() {
|
||||
trace!(
|
||||
"send_loop({}): queue = {:?}",
|
||||
debug_name,
|
||||
sending
|
||||
.items
|
||||
.iter()
|
||||
.map(|(prio, i)| i.dump(*prio))
|
||||
.collect::<Vec<_>>()
|
||||
.join(" ; ")
|
||||
);
|
||||
|
||||
let recv_fut = async {
|
||||
if let Some(chan) = &mut msg_recv {
|
||||
chan.recv().await
|
||||
} else {
|
||||
futures::future::pending().await
|
||||
}
|
||||
};
|
||||
let send_fut = sending.next_ready();
|
||||
|
||||
// recv_fut is cancellation-safe according to tokio doc,
|
||||
// send_fut is cancellation-safe as implemented above?
|
||||
tokio::select! {
|
||||
biased; // always read incomming channel first if it has data
|
||||
sth = recv_fut => {
|
||||
match sth {
|
||||
Some(SendItem::Stream(id, prio, order_tag, data)) => {
|
||||
trace!("send_loop({}): add stream {} to send", debug_name, id);
|
||||
sending.push(SendQueueItem {
|
||||
id,
|
||||
prio,
|
||||
order_tag,
|
||||
data: ByteStreamReader::new(data),
|
||||
sent: 0,
|
||||
})
|
||||
}
|
||||
Some(SendItem::Cancel(id)) => {
|
||||
trace!("send_loop({}): cancelling {}", debug_name, id);
|
||||
sending.remove(id);
|
||||
let header_id = RequestID::to_be_bytes(id);
|
||||
write.write_all(&header_id[..]).await?;
|
||||
write.write_all(&ChunkLength::to_be_bytes(CANCEL_REQUEST)).await?;
|
||||
write.flush().await?;
|
||||
}
|
||||
None => {
|
||||
msg_recv = None;
|
||||
}
|
||||
};
|
||||
}
|
||||
(id, data) = send_fut => {
|
||||
trace!(
|
||||
"send_loop({}): id {}, send {} bytes, header_size {}",
|
||||
debug_name,
|
||||
id,
|
||||
data.data().len(),
|
||||
hex::encode(data.header())
|
||||
);
|
||||
|
||||
let header_id = RequestID::to_be_bytes(id);
|
||||
write.write_all(&header_id[..]).await?;
|
||||
|
||||
write.write_all(&data.header()).await?;
|
||||
write.write_all(data.data()).await?;
|
||||
write.flush().await?;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let _ = write.goodbye().await;
|
||||
Ok(())
|
||||
}
|
||||
}
|
222
src/server.rs
222
src/server.rs
|
@ -1,222 +0,0 @@
|
|||
use std::collections::HashMap;
|
||||
use std::net::SocketAddr;
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
use arc_swap::ArcSwapOption;
|
||||
use async_trait::async_trait;
|
||||
use log::*;
|
||||
|
||||
use futures::io::{AsyncReadExt, AsyncWriteExt};
|
||||
use kuska_handshake::async_std::{handshake_server, BoxStream};
|
||||
use tokio::net::TcpStream;
|
||||
use tokio::select;
|
||||
use tokio::sync::{mpsc, watch};
|
||||
use tokio_util::compat::*;
|
||||
|
||||
#[cfg(feature = "telemetry")]
|
||||
use opentelemetry::{
|
||||
trace::{FutureExt, Span, SpanKind, TraceContextExt, TraceId, Tracer},
|
||||
Context, KeyValue,
|
||||
};
|
||||
#[cfg(feature = "telemetry")]
|
||||
use opentelemetry_contrib::trace::propagator::binary::*;
|
||||
#[cfg(feature = "telemetry")]
|
||||
use rand::{thread_rng, Rng};
|
||||
|
||||
use crate::error::*;
|
||||
use crate::message::*;
|
||||
use crate::netapp::*;
|
||||
use crate::recv::*;
|
||||
use crate::send::*;
|
||||
use crate::stream::*;
|
||||
use crate::util::*;
|
||||
|
||||
// The client and server connection structs (client.rs and server.rs)
|
||||
// build upon the chunking mechanism which is exclusively contained
|
||||
// in proto.rs.
|
||||
// Here, we just care about sending big messages without size limit.
|
||||
// The format of these messages is described below.
|
||||
// Chunking happens independently.
|
||||
|
||||
// Request message format (client -> server):
|
||||
// - u8 priority
|
||||
// - u8 path length
|
||||
// - [u8; path length] path
|
||||
// - [u8; *] data
|
||||
|
||||
// Response message format (server -> client):
|
||||
// - u8 response code
|
||||
// - [u8; *] response
|
||||
|
||||
pub(crate) struct ServerConn {
|
||||
pub(crate) remote_addr: SocketAddr,
|
||||
pub(crate) peer_id: NodeID,
|
||||
|
||||
netapp: Arc<NetApp>,
|
||||
|
||||
resp_send: ArcSwapOption<mpsc::UnboundedSender<SendItem>>,
|
||||
running_handlers: Mutex<HashMap<RequestID, tokio::task::JoinHandle<()>>>,
|
||||
}
|
||||
|
||||
impl ServerConn {
|
||||
pub(crate) async fn run(
|
||||
netapp: Arc<NetApp>,
|
||||
socket: TcpStream,
|
||||
must_exit: watch::Receiver<bool>,
|
||||
) -> Result<(), Error> {
|
||||
let remote_addr = socket.peer_addr()?;
|
||||
let mut socket = socket.compat();
|
||||
|
||||
// Do handshake to authenticate client
|
||||
let handshake = handshake_server(
|
||||
&mut socket,
|
||||
netapp.netid.clone(),
|
||||
netapp.id,
|
||||
netapp.privkey.clone(),
|
||||
)
|
||||
.await?;
|
||||
let peer_id = handshake.peer_pk;
|
||||
|
||||
debug!(
|
||||
"Handshake complete (server) with {}@{}",
|
||||
hex::encode(peer_id),
|
||||
remote_addr
|
||||
);
|
||||
|
||||
// Create BoxStream layer that encodes content
|
||||
let (read, write) = socket.split();
|
||||
let (read, mut write) =
|
||||
BoxStream::from_handshake(read, write, handshake, 0x8000).split_read_write();
|
||||
|
||||
// Before doing anything, send version tag, so that client
|
||||
// can check and disconnect if version is wrong
|
||||
write.write_all(&netapp.version_tag[..]).await?;
|
||||
write.flush().await?;
|
||||
|
||||
// Build and launch stuff that handles requests server-side
|
||||
let (resp_send, resp_recv) = mpsc::unbounded_channel();
|
||||
|
||||
let conn = Arc::new(ServerConn {
|
||||
netapp: netapp.clone(),
|
||||
remote_addr,
|
||||
peer_id,
|
||||
resp_send: ArcSwapOption::new(Some(Arc::new(resp_send))),
|
||||
running_handlers: Mutex::new(HashMap::new()),
|
||||
});
|
||||
|
||||
netapp.connected_as_server(peer_id, conn.clone());
|
||||
|
||||
let debug_name = format!("SRV {}", hex::encode(&peer_id[..8]));
|
||||
let debug_name_2 = debug_name.clone();
|
||||
|
||||
let conn2 = conn.clone();
|
||||
let recv_future = tokio::spawn(async move {
|
||||
select! {
|
||||
r = conn2.recv_loop(read, debug_name_2) => r,
|
||||
_ = await_exit(must_exit) => Ok(())
|
||||
}
|
||||
});
|
||||
let send_future = tokio::spawn(conn.clone().send_loop(resp_recv, write, debug_name));
|
||||
|
||||
recv_future.await.log_err("ServerConn recv_loop");
|
||||
conn.resp_send.store(None);
|
||||
send_future.await.log_err("ServerConn send_loop");
|
||||
|
||||
netapp.disconnected_as_server(&peer_id, conn);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
async fn recv_handler_aux(self: &Arc<Self>, req_enc: ReqEnc) -> Result<RespEnc, Error> {
|
||||
let path = String::from_utf8(req_enc.path.to_vec())?;
|
||||
|
||||
let handler_opt = {
|
||||
let endpoints = self.netapp.endpoints.read().unwrap();
|
||||
endpoints.get(&path).map(|e| e.clone_endpoint())
|
||||
};
|
||||
|
||||
if let Some(handler) = handler_opt {
|
||||
cfg_if::cfg_if! {
|
||||
if #[cfg(feature = "telemetry")] {
|
||||
let tracer = opentelemetry::global::tracer("netapp");
|
||||
|
||||
let mut span = if !req_enc.telemetry_id.is_empty() {
|
||||
let propagator = BinaryPropagator::new();
|
||||
let context = propagator.from_bytes(req_enc.telemetry_id.to_vec());
|
||||
let context = Context::new().with_remote_span_context(context);
|
||||
tracer.span_builder(format!(">> RPC {}", path))
|
||||
.with_kind(SpanKind::Server)
|
||||
.start_with_context(&tracer, &context)
|
||||
} else {
|
||||
let mut rng = thread_rng();
|
||||
let trace_id = TraceId::from_bytes(rng.gen());
|
||||
tracer
|
||||
.span_builder(format!(">> RPC {}", path))
|
||||
.with_kind(SpanKind::Server)
|
||||
.with_trace_id(trace_id)
|
||||
.start(&tracer)
|
||||
};
|
||||
span.set_attribute(KeyValue::new("path", path.to_string()));
|
||||
span.set_attribute(KeyValue::new("len_query_msg", req_enc.msg.len() as i64));
|
||||
|
||||
handler.handle(req_enc, self.peer_id)
|
||||
.with_context(Context::current_with_span(span))
|
||||
.await
|
||||
} else {
|
||||
handler.handle(req_enc, self.peer_id).await
|
||||
}
|
||||
}
|
||||
} else {
|
||||
Err(Error::NoHandler)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl SendLoop for ServerConn {}
|
||||
|
||||
#[async_trait]
|
||||
impl RecvLoop for ServerConn {
|
||||
fn recv_handler(self: &Arc<Self>, id: RequestID, stream: ByteStream) {
|
||||
let resp_send = match self.resp_send.load_full() {
|
||||
Some(c) => c,
|
||||
None => return,
|
||||
};
|
||||
|
||||
let mut rh = self.running_handlers.lock().unwrap();
|
||||
|
||||
let self2 = self.clone();
|
||||
let jh = tokio::spawn(async move {
|
||||
debug!("server: recv_handler got {}", id);
|
||||
|
||||
let (prio, resp_enc_result) = match ReqEnc::decode(stream).await {
|
||||
Ok(req_enc) => (req_enc.prio, self2.recv_handler_aux(req_enc).await),
|
||||
Err(e) => (PRIO_HIGH, Err(e)),
|
||||
};
|
||||
|
||||
debug!("server: sending response to {}", id);
|
||||
|
||||
let (resp_stream, resp_order) = RespEnc::encode(resp_enc_result);
|
||||
resp_send
|
||||
.send(SendItem::Stream(id, prio, resp_order, resp_stream))
|
||||
.log_err("ServerConn recv_handler send resp bytes");
|
||||
|
||||
self2.running_handlers.lock().unwrap().remove(&id);
|
||||
});
|
||||
|
||||
rh.insert(id, jh);
|
||||
}
|
||||
|
||||
fn cancel_handler(self: &Arc<Self>, id: RequestID) {
|
||||
trace!("received cancel for request {}", id);
|
||||
|
||||
// If the handler is still running, abort it now
|
||||
if let Some(jh) = self.running_handlers.lock().unwrap().remove(&id) {
|
||||
jh.abort();
|
||||
}
|
||||
|
||||
// Inform the response sender that we don't need to send the response
|
||||
if let Some(resp_send) = self.resp_send.load_full() {
|
||||
let _ = resp_send.send(SendItem::Cancel(id));
|
||||
}
|
||||
}
|
||||
}
|
202
src/stream.rs
202
src/stream.rs
|
@ -1,202 +0,0 @@
|
|||
use std::pin::Pin;
|
||||
use std::task::{Context, Poll};
|
||||
|
||||
use bytes::Bytes;
|
||||
|
||||
use futures::Future;
|
||||
use futures::{Stream, StreamExt};
|
||||
use tokio::io::AsyncRead;
|
||||
|
||||
use crate::bytes_buf::BytesBuf;
|
||||
|
||||
/// A stream of bytes (click to read more).
|
||||
///
|
||||
/// When sent through Netapp, the Vec may be split in smaller chunk in such a way
|
||||
/// consecutive Vec may get merged, but Vec and error code may not be reordered
|
||||
///
|
||||
/// Items sent in the ByteStream may be errors of type `std::io::Error`.
|
||||
/// An error indicates the end of the ByteStream: a reader should no longer read
|
||||
/// after recieving an error, and a writer should stop writing after sending an error.
|
||||
pub type ByteStream = Pin<Box<dyn Stream<Item = Packet> + Send + Sync>>;
|
||||
|
||||
/// A packet sent in a ByteStream, which may contain either
|
||||
/// a Bytes object or an error
|
||||
pub type Packet = Result<Bytes, std::io::Error>;
|
||||
|
||||
// ----
|
||||
|
||||
/// A helper struct to read defined lengths of data from a BytesStream
|
||||
pub struct ByteStreamReader {
|
||||
stream: ByteStream,
|
||||
buf: BytesBuf,
|
||||
eos: bool,
|
||||
err: Option<std::io::Error>,
|
||||
}
|
||||
|
||||
impl ByteStreamReader {
|
||||
/// Creates a new `ByteStreamReader` from a `ByteStream`
|
||||
pub fn new(stream: ByteStream) -> Self {
|
||||
ByteStreamReader {
|
||||
stream,
|
||||
buf: BytesBuf::new(),
|
||||
eos: false,
|
||||
err: None,
|
||||
}
|
||||
}
|
||||
|
||||
/// Read exactly `read_len` bytes from the underlying stream
|
||||
/// (returns a future)
|
||||
pub fn read_exact(&mut self, read_len: usize) -> ByteStreamReadExact<'_> {
|
||||
ByteStreamReadExact {
|
||||
reader: self,
|
||||
read_len,
|
||||
fail_on_eos: true,
|
||||
}
|
||||
}
|
||||
|
||||
/// Read at most `read_len` bytes from the underlying stream, or less
|
||||
/// if the end of the stream is reached (returns a future)
|
||||
pub fn read_exact_or_eos(&mut self, read_len: usize) -> ByteStreamReadExact<'_> {
|
||||
ByteStreamReadExact {
|
||||
reader: self,
|
||||
read_len,
|
||||
fail_on_eos: false,
|
||||
}
|
||||
}
|
||||
|
||||
/// Read exactly one byte from the underlying stream and returns it
|
||||
/// as an u8
|
||||
pub async fn read_u8(&mut self) -> Result<u8, ReadExactError> {
|
||||
Ok(self.read_exact(1).await?[0])
|
||||
}
|
||||
|
||||
/// Read exactly two bytes from the underlying stream and returns them as an u16 (using
|
||||
/// big-endian decoding)
|
||||
pub async fn read_u16(&mut self) -> Result<u16, ReadExactError> {
|
||||
let bytes = self.read_exact(2).await?;
|
||||
let mut b = [0u8; 2];
|
||||
b.copy_from_slice(&bytes[..]);
|
||||
Ok(u16::from_be_bytes(b))
|
||||
}
|
||||
|
||||
/// Read exactly four bytes from the underlying stream and returns them as an u32 (using
|
||||
/// big-endian decoding)
|
||||
pub async fn read_u32(&mut self) -> Result<u32, ReadExactError> {
|
||||
let bytes = self.read_exact(4).await?;
|
||||
let mut b = [0u8; 4];
|
||||
b.copy_from_slice(&bytes[..]);
|
||||
Ok(u32::from_be_bytes(b))
|
||||
}
|
||||
|
||||
/// Transforms the stream reader back into the underlying stream (starting
|
||||
/// after everything that the reader has read)
|
||||
pub fn into_stream(self) -> ByteStream {
|
||||
let buf_stream = futures::stream::iter(self.buf.into_slices().into_iter().map(Ok));
|
||||
if let Some(err) = self.err {
|
||||
Box::pin(buf_stream.chain(futures::stream::once(async move { Err(err) })))
|
||||
} else if self.eos {
|
||||
Box::pin(buf_stream)
|
||||
} else {
|
||||
Box::pin(buf_stream.chain(self.stream))
|
||||
}
|
||||
}
|
||||
|
||||
/// Tries to fill the internal read buffer from the underlying stream if it is empty.
|
||||
/// Calling this might be necessary to ensure that `.eos()` returns a correct
|
||||
/// result, otherwise the reader might not be aware that the underlying
|
||||
/// stream has nothing left to return.
|
||||
pub async fn fill_buffer(&mut self) {
|
||||
if self.buf.is_empty() {
|
||||
let packet = self.stream.next().await;
|
||||
self.add_stream_next(packet);
|
||||
}
|
||||
}
|
||||
|
||||
/// Clears the internal read buffer and returns its content
|
||||
pub fn take_buffer(&mut self) -> Bytes {
|
||||
self.buf.take_all()
|
||||
}
|
||||
|
||||
/// Returns true if the end of the underlying stream has been reached
|
||||
pub fn eos(&self) -> bool {
|
||||
self.buf.is_empty() && self.eos
|
||||
}
|
||||
|
||||
fn try_get(&mut self, read_len: usize) -> Option<Bytes> {
|
||||
self.buf.take_exact(read_len)
|
||||
}
|
||||
|
||||
fn add_stream_next(&mut self, packet: Option<Packet>) {
|
||||
match packet {
|
||||
Some(Ok(slice)) => {
|
||||
self.buf.extend(slice);
|
||||
}
|
||||
Some(Err(e)) => {
|
||||
self.err = Some(e);
|
||||
self.eos = true;
|
||||
}
|
||||
None => {
|
||||
self.eos = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// The error kind that can be returned by `ByteStreamReader::read_exact` and
|
||||
/// `ByteStreamReader::read_exact_or_eos`
|
||||
pub enum ReadExactError {
|
||||
/// The end of the stream was reached before the requested number of bytes could be read
|
||||
UnexpectedEos,
|
||||
/// The underlying data stream returned an IO error when trying to read
|
||||
Stream(std::io::Error),
|
||||
}
|
||||
|
||||
/// The future returned by `ByteStreamReader::read_exact` and
|
||||
/// `ByteStreamReader::read_exact_or_eos`
|
||||
#[pin_project::pin_project]
|
||||
pub struct ByteStreamReadExact<'a> {
|
||||
#[pin]
|
||||
reader: &'a mut ByteStreamReader,
|
||||
read_len: usize,
|
||||
fail_on_eos: bool,
|
||||
}
|
||||
|
||||
impl<'a> Future for ByteStreamReadExact<'a> {
|
||||
type Output = Result<Bytes, ReadExactError>;
|
||||
|
||||
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<Bytes, ReadExactError>> {
|
||||
let mut this = self.project();
|
||||
|
||||
loop {
|
||||
if let Some(bytes) = this.reader.try_get(*this.read_len) {
|
||||
return Poll::Ready(Ok(bytes));
|
||||
}
|
||||
if let Some(err) = &this.reader.err {
|
||||
let err = std::io::Error::new(err.kind(), format!("{}", err));
|
||||
return Poll::Ready(Err(ReadExactError::Stream(err)));
|
||||
}
|
||||
if this.reader.eos {
|
||||
if *this.fail_on_eos {
|
||||
return Poll::Ready(Err(ReadExactError::UnexpectedEos));
|
||||
} else {
|
||||
return Poll::Ready(Ok(this.reader.take_buffer()));
|
||||
}
|
||||
}
|
||||
|
||||
let next_packet = futures::ready!(this.reader.stream.as_mut().poll_next(cx));
|
||||
this.reader.add_stream_next(next_packet);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ----
|
||||
|
||||
/// Turns a `tokio::io::AsyncRead` asynchronous reader into a `ByteStream`
|
||||
pub fn asyncread_stream<R: AsyncRead + Send + Sync + 'static>(reader: R) -> ByteStream {
|
||||
Box::pin(tokio_util::io::ReaderStream::new(reader))
|
||||
}
|
||||
|
||||
/// Turns a `ByteStream` into a `tokio::io::AsyncRead` asynchronous reader
|
||||
pub fn stream_asyncread(stream: ByteStream) -> impl AsyncRead + Send + Sync + 'static {
|
||||
tokio_util::io::StreamReader::new(stream)
|
||||
}
|
118
src/test.rs
118
src/test.rs
|
@ -1,118 +0,0 @@
|
|||
use std::net::SocketAddr;
|
||||
use std::sync::Arc;
|
||||
use std::time::Duration;
|
||||
|
||||
use tokio::select;
|
||||
use tokio::sync::watch;
|
||||
|
||||
use sodiumoxide::crypto::auth;
|
||||
use sodiumoxide::crypto::sign::ed25519;
|
||||
|
||||
use crate::netapp::*;
|
||||
use crate::peering::fullmesh::*;
|
||||
use crate::NodeID;
|
||||
|
||||
#[tokio::test(flavor = "current_thread")]
|
||||
async fn test_with_basic_scheduler() {
|
||||
env_logger::init();
|
||||
run_test().await
|
||||
}
|
||||
|
||||
#[tokio::test(flavor = "multi_thread", worker_threads = 4)]
|
||||
async fn test_with_threaded_scheduler() {
|
||||
run_test().await
|
||||
}
|
||||
|
||||
async fn run_test() {
|
||||
select! {
|
||||
_ = run_test_inner() => (),
|
||||
_ = tokio::time::sleep(Duration::from_secs(20)) => panic!("timeout"),
|
||||
}
|
||||
}
|
||||
|
||||
async fn run_test_inner() {
|
||||
let netid = auth::gen_key();
|
||||
|
||||
let (pk1, sk1) = ed25519::gen_keypair();
|
||||
let (pk2, sk2) = ed25519::gen_keypair();
|
||||
let (pk3, sk3) = ed25519::gen_keypair();
|
||||
|
||||
let addr1: SocketAddr = "127.0.0.1:19991".parse().unwrap();
|
||||
let addr2: SocketAddr = "127.0.0.1:19992".parse().unwrap();
|
||||
let addr3: SocketAddr = "127.0.0.1:19993".parse().unwrap();
|
||||
|
||||
let (stop_tx, stop_rx) = watch::channel(false);
|
||||
|
||||
let (thread1, _netapp1, peering1) =
|
||||
run_netapp(netid.clone(), pk1, sk1, addr1, vec![], stop_rx.clone());
|
||||
tokio::time::sleep(Duration::from_secs(2)).await;
|
||||
|
||||
// Connect second node and check it peers with everyone
|
||||
let (thread2, _netapp2, peering2) = run_netapp(
|
||||
netid.clone(),
|
||||
pk2,
|
||||
sk2,
|
||||
addr2,
|
||||
vec![(pk1, addr1)],
|
||||
stop_rx.clone(),
|
||||
);
|
||||
tokio::time::sleep(Duration::from_secs(5)).await;
|
||||
|
||||
let pl1 = peering1.get_peer_list();
|
||||
println!("A pl1: {:?}", pl1);
|
||||
assert_eq!(pl1.len(), 2);
|
||||
|
||||
let pl2 = peering2.get_peer_list();
|
||||
println!("A pl2: {:?}", pl2);
|
||||
assert_eq!(pl2.len(), 2);
|
||||
|
||||
// Connect third ndoe and check it peers with everyone
|
||||
let (thread3, _netapp3, peering3) =
|
||||
run_netapp(netid, pk3, sk3, addr3, vec![(pk2, addr2)], stop_rx.clone());
|
||||
tokio::time::sleep(Duration::from_secs(5)).await;
|
||||
|
||||
let pl1 = peering1.get_peer_list();
|
||||
println!("B pl1: {:?}", pl1);
|
||||
assert_eq!(pl1.len(), 3);
|
||||
|
||||
let pl2 = peering2.get_peer_list();
|
||||
println!("B pl2: {:?}", pl2);
|
||||
assert_eq!(pl2.len(), 3);
|
||||
|
||||
let pl3 = peering3.get_peer_list();
|
||||
println!("B pl3: {:?}", pl3);
|
||||
assert_eq!(pl3.len(), 3);
|
||||
|
||||
// Send stop signal and wait for everyone to finish
|
||||
stop_tx.send(true).unwrap();
|
||||
thread1.await.unwrap();
|
||||
thread2.await.unwrap();
|
||||
thread3.await.unwrap();
|
||||
}
|
||||
|
||||
fn run_netapp(
|
||||
netid: auth::Key,
|
||||
_pk: NodeID,
|
||||
sk: ed25519::SecretKey,
|
||||
listen_addr: SocketAddr,
|
||||
bootstrap_peers: Vec<(NodeID, SocketAddr)>,
|
||||
must_exit: watch::Receiver<bool>,
|
||||
) -> (
|
||||
tokio::task::JoinHandle<()>,
|
||||
Arc<NetApp>,
|
||||
Arc<FullMeshPeeringStrategy>,
|
||||
) {
|
||||
let netapp = NetApp::new(0u64, netid, sk);
|
||||
let peering = FullMeshPeeringStrategy::new(netapp.clone(), bootstrap_peers, None);
|
||||
|
||||
let peering2 = peering.clone();
|
||||
let netapp2 = netapp.clone();
|
||||
let fut = tokio::spawn(async move {
|
||||
tokio::join!(
|
||||
netapp2.listen(listen_addr, None, must_exit.clone()),
|
||||
peering2.run(must_exit.clone()),
|
||||
);
|
||||
});
|
||||
|
||||
(fut, netapp, peering)
|
||||
}
|
62
src/util.rs
62
src/util.rs
|
@ -1,11 +1,8 @@
|
|||
use std::net::SocketAddr;
|
||||
|
||||
use log::info;
|
||||
use serde::Serialize;
|
||||
|
||||
use tokio::sync::watch;
|
||||
|
||||
use crate::netapp::*;
|
||||
pub type NodeID = sodiumoxide::crypto::sign::ed25519::PublicKey;
|
||||
|
||||
/// Utility function: encodes any serializable value in MessagePack binary format
|
||||
/// using the RMP library.
|
||||
|
@ -26,10 +23,9 @@ where
|
|||
|
||||
/// This async function returns only when a true signal was received
|
||||
/// from a watcher that tells us when to exit.
|
||||
///
|
||||
/// Usefull in a select statement to interrupt another
|
||||
/// future:
|
||||
/// ```ignore
|
||||
/// ```
|
||||
/// select!(
|
||||
/// _ = a_long_task() => Success,
|
||||
/// _ = await_exit(must_exit) => Interrupted,
|
||||
|
@ -42,57 +38,3 @@ pub async fn await_exit(mut must_exit: watch::Receiver<bool>) {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a watch that contains `false`, and that changes
|
||||
/// to `true` when a Ctrl+C signal is received.
|
||||
pub fn watch_ctrl_c() -> watch::Receiver<bool> {
|
||||
let (send_cancel, watch_cancel) = watch::channel(false);
|
||||
tokio::spawn(async move {
|
||||
tokio::signal::ctrl_c()
|
||||
.await
|
||||
.expect("failed to install CTRL+C signal handler");
|
||||
info!("Received CTRL+C, shutting down.");
|
||||
send_cancel.send(true).unwrap();
|
||||
});
|
||||
watch_cancel
|
||||
}
|
||||
|
||||
/// Parse a peer's address including public key, written in the format:
|
||||
/// `<public key hex>@<ip>:<port>`
|
||||
pub fn parse_peer_addr(peer: &str) -> Option<(NodeID, SocketAddr)> {
|
||||
let delim = peer.find('@')?;
|
||||
let (key, ip) = peer.split_at(delim);
|
||||
let pubkey = NodeID::from_slice(&hex::decode(key).ok()?)?;
|
||||
let ip = ip[1..].parse::<SocketAddr>().ok()?;
|
||||
Some((pubkey, ip))
|
||||
}
|
||||
|
||||
/// Parse and resolve a peer's address including public key, written in the format:
|
||||
/// `<public key hex>@<ip or hostname>:<port>`
|
||||
pub fn parse_and_resolve_peer_addr(peer: &str) -> Option<(NodeID, Vec<SocketAddr>)> {
|
||||
use std::net::ToSocketAddrs;
|
||||
|
||||
let delim = peer.find('@')?;
|
||||
let (key, host) = peer.split_at(delim);
|
||||
let pubkey = NodeID::from_slice(&hex::decode(key).ok()?)?;
|
||||
let hosts = host[1..].to_socket_addrs().ok()?.collect::<Vec<_>>();
|
||||
if hosts.is_empty() {
|
||||
return None;
|
||||
}
|
||||
Some((pubkey, hosts))
|
||||
}
|
||||
|
||||
/// async version of parse_and_resolve_peer_addr
|
||||
pub async fn parse_and_resolve_peer_addr_async(peer: &str) -> Option<(NodeID, Vec<SocketAddr>)> {
|
||||
let delim = peer.find('@')?;
|
||||
let (key, host) = peer.split_at(delim);
|
||||
let pubkey = NodeID::from_slice(&hex::decode(key).ok()?)?;
|
||||
let hosts = tokio::net::lookup_host(&host[1..])
|
||||
.await
|
||||
.ok()?
|
||||
.collect::<Vec<_>>();
|
||||
if hosts.is_empty() {
|
||||
return None;
|
||||
}
|
||||
Some((pubkey, hosts))
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue