19 KiB
+++ title = "Configuration file format" weight = 20 +++
Full example
Here is an example garage.toml
configuration file that illustrates all of the possible options:
metadata_dir = "/var/lib/garage/meta"
data_dir = "/var/lib/garage/data"
db_engine = "lmdb"
block_size = 1048576
sled_cache_capacity = 134217728
sled_flush_every_ms = 2000
replication_mode = "3"
compression_level = 1
rpc_secret = "4425f5c26c5e11581d3223904324dcb5b5d5dfb14e5e7f35e38c595424f5f1e6"
rpc_bind_addr = "[::]:3901"
rpc_public_addr = "[fc00:1::1]:3901"
bootstrap_peers = [
"563e1ac825ee3323aa441e72c26d1030d6d4414aeb3dd25287c531e7fc2bc95d@[fc00:1::1]:3901",
"86f0f26ae4afbd59aaf9cfb059eefac844951efd5b8caeec0d53f4ed6c85f332[fc00:1::2]:3901",
"681456ab91350f92242e80a531a3ec9392cb7c974f72640112f90a600d7921a4@[fc00:B::1]:3901",
"212fd62eeaca72c122b45a7f4fa0f55e012aa5e24ac384a72a3016413fa724ff@[fc00:F::1]:3901",
]
[consul_discovery]
consul_http_addr = "http://127.0.0.1:8500"
service_name = "garage-daemon"
ca_cert = "/etc/consul/consul-ca.crt"
client_cert = "/etc/consul/consul-client.crt"
client_key = "/etc/consul/consul-key.crt"
tls_skip_verify = false
[consul_service_discovery]
consul_http_addr = "https://127.0.0.1:8501"
consul_http_token = "abcdef-01234-56789"
service_name = "garage"
ca_cert = "/etc/consul/consul-ca.crt"
tls_skip_verify = false
# tags to add to the published service
tags = [ "dns-enabled" ]
# additional service meta to send along registration
meta = { dns-acl = "allow trusted" }
[kubernetes_discovery]
namespace = "garage"
service_name = "garage-daemon"
skip_crd = false
[s3_api]
api_bind_addr = "[::]:3900"
s3_region = "garage"
root_domain = ".s3.garage"
[s3_web]
bind_addr = "[::]:3902"
root_domain = ".web.garage"
[admin]
api_bind_addr = "0.0.0.0:3903"
metrics_token = "cacce0b2de4bc2d9f5b5fdff551e01ac1496055aed248202d415398987e35f81"
admin_token = "ae8cb40ea7368bbdbb6430af11cca7da833d3458a5f52086f4e805a570fb5c2a"
trace_sink = "http://localhost:4317"
The following gives details about each available configuration option.
Available configuration options
metadata_dir
The directory in which Garage will store its metadata. This contains the node identifier, the network configuration and the peer list, the list of buckets and keys as well as the index of all objects, object version and object blocks.
Store this folder on a fast SSD drive if possible to maximize Garage's performance.
data_dir
The directory in which Garage will store the data blocks of objects.
This folder can be placed on an HDD. The space available for data_dir
should be counted to determine a node's capacity
when adding it to the cluster layout.
db_engine
(since v0.8.0
)
By default, Garage uses the Sled embedded database library
to store its metadata on-disk. Since v0.8.0
, Garage can use alternative storage backends as follows:
DB engine | db_engine value |
Database path |
---|---|---|
Sled | "sled" |
<metadata_dir>/db/ |
LMDB | "lmdb" |
<metadata_dir>/db.lmdb/ |
Sqlite | "sqlite" |
<metadata_dir>/db.sqlite |
Performance characteristics of the different DB engines are as follows:
- Sled: the default database engine, which tends to produce large data files and also has performance issues, especially when the metadata folder is on a traditional HDD and not on SSD.
- LMDB: the recommended alternative on 64-bit systems, much more space-efficiant and slightly faster. Note that the data format of LMDB is not portable between architectures, so for instance the Garage database of an x86-64 node cannot be moved to an ARM64 node. Also note that, while LMDB can technically be used on 32-bit systems, this will limit your node to very small database sizes due to how LMDB works; it is therefore not recommended.
- Sqlite: Garage supports Sqlite as a storage backend for metadata, however it may have issues and is also very slow in its current implementation, so it is not recommended to be used for now.
It is possible to convert Garage's metadata directory from one format to another with a small utility named convert_db
,
which can be downloaded at the following locations:
for amd64,
for i386,
for arm64,
for arm.
The convert_db
utility is used as folows:
convert-db -a <input db engine> -i <input db path> \
-b <output db engine> -o <output db path>
Make sure to specify the full database path as presented in the table above, and not just the path to the metadata directory.
block_size
Garage splits stored objects in consecutive chunks of size block_size
(except the last one which might be smaller). The default size is 1MB and
should work in most cases. We recommend increasing it to e.g. 10MB if
you are using Garage to store large files and have fast network connections
between all nodes (e.g. 1gbps).
If you are interested in tuning this, feel free to do so (and remember to report your findings to us!). When this value is changed for a running Garage installation, only files newly uploaded will be affected. Previously uploaded files will remain available. This however means that chunks from existing files will not be deduplicated with chunks from newly uploaded files, meaning you might use more storage space that is optimally possible.
sled_cache_capacity
This parameter can be used to tune the capacity of the cache used by sled, the database Garage uses internally to store metadata. Tune this to fit the RAM you wish to make available to your Garage instance. This value has a conservative default (128MB) so that Garage doesn't use too much RAM by default, but feel free to increase this for higher performance.
sled_flush_every_ms
This parameters can be used to tune the flushing interval of sled. Increase this if sled is thrashing your SSD, at the risk of losing more data in case of a power outage (though this should not matter much as data is replicated on other nodes). The default value, 2000ms, should be appropriate for most use cases.
replication_mode
Garage supports the following replication modes:
-
none
or1
: data stored on Garage is stored on a single node. There is no redundancy, and data will be unavailable as soon as one node fails or its network is disconnected. Do not use this for anything else than test deployments. -
2
: data stored on Garage will be stored on two different nodes, if possible in different zones. Garage tolerates one node failure, or several nodes failing but all in a single zone (in a deployment with at least two zones), before losing data. Data remains available in read-only mode when one node is down, but write operations will fail.2-dangerous
: a variant of mode2
, where written objects are written to the second replica asynchronously. This means that Garage will return200 OK
to a PutObject request before the second copy is fully written (or even before it even starts being written). This means that data can more easily be lost if the node crashes before a second copy can be completed. This also means that written objects might not be visible immediately in read operations. In other words, this mode severely breaks the consistency and durability guarantees of standard Garage cluster operation. Benefits of this mode: you can still write to your cluster when one node is unavailable.
-
3
: data stored on Garage will be stored on three different nodes, if possible each in a different zones. Garage tolerates two node failure, or several node failures but in no more than two zones (in a deployment with at least three zones), before losing data. As long as only a single node fails, or node failures are only in a single zone, reading and writing data to Garage can continue normally.-
3-degraded
: a variant of replication mode3
, that lowers the read quorum to1
, to allow you to read data from your cluster when several nodes (or nodes in several zones) are unavailable. In this mode, Garage does not provide read-after-write consistency anymore. The write quorum is still 2, ensuring that data successfully written to Garage is stored on at least two nodes. -
3-dangerous
: a variant of replication mode3
that lowers both the read and write quorums to1
, to allow you to both read and write to your cluster when several nodes (or nodes in several zones) are unavailable. It is the least consistent mode of operation proposed by Garage, and also one that should probably never be used.
-
Note that in modes 2
and 3
,
if at least the same number of zones are available, an arbitrary number of failures in
any given zone is tolerated as copies of data will be spread over several zones.
Make sure replication_mode
is the same in the configuration files of all nodes.
Never run a Garage cluster where that is not the case.
The quorums associated with each replication mode are described below:
replication_mode |
Number of replicas | Write quorum | Read quorum | Read-after-write consistency? |
---|---|---|---|---|
none or 1 |
1 | 1 | 1 | yes |
2 |
2 | 2 | 1 | yes |
2-dangerous |
2 | 1 | 1 | NO |
3 |
3 | 2 | 2 | yes |
3-degraded |
3 | 2 | 1 | NO |
3-dangerous |
3 | 1 | 1 | NO |
Changing the replication_mode
between modes with the same number of replicas
(e.g. from 3
to 3-degraded
, or from 2-dangerous
to 2
), can be done easily by
just changing the replication_mode
parameter in your config files and restarting all your
Garage nodes.
It is also technically possible to change the replication mode to a mode with a
different numbers of replicas, although it's a dangerous operation that is not
officially supported. This requires you to delete the existing cluster layout
and create a new layout from scratch, meaning that a full rebalancing of your
cluster's data will be needed. To do it, shut down your cluster entirely,
delete the custer_layout
files in the meta directories of all your nodes,
update all your configuration files with the new replication_mode
parameter,
restart your cluster, and then create a new layout with all the nodes you want
to keep. Rebalancing data will take some time, and data might temporarily
appear unavailable to your users. It is recommended to shut down public access
to the cluster while rebalancing is in progress. In theory, no data should be
lost as rebalancing is a routine operation for Garage, although we cannot
guarantee you that everything will go right in such an extreme scenario.
compression_level
Zstd compression level to use for storing blocks.
Values between 1
(faster compression) and 19
(smaller file) are standard compression
levels for zstd. From 20
to 22
, compression levels are referred as "ultra" and must be
used with extra care as it will use lot of memory. A value of 0
will let zstd choose a
default value (currently 3
). Finally, zstd has also compression designed to be faster
than default compression levels, they range from -1
(smaller file) to -99
(faster
compression).
If you do not specify a compression_level
entry, Garage will set it to 1
for you. With
this parameters, zstd consumes low amount of cpu and should work faster than line speed in
most situations, while saving some space and intra-cluster
bandwidth.
If you want to totally deactivate zstd in Garage, you can pass the special value 'none'
. No
zstd related code will be called, your chunks will be stored on disk without any processing.
Compression is done synchronously, setting a value too high will add latency to write queries.
This value can be different between nodes, compression is done by the node which receive the API call.
rpc_secret
, rpc_secret_file
or GARAGE_RPC_SECRET
(env)
Garage uses a secret key, called an RPC secret, that is shared between all
nodes of the cluster in order to identify these nodes and allow them to
communicate together. The RPC secret is a 32-byte hex-encoded random string,
which can be generated with a command such as openssl rand -hex 32
.
The RPC secret should be specified in the rpc_secret
configuration variable.
Since Garage v0.8.2
, the RPC secret can also be stored in a file whose path is
given in the configuration variable rpc_secret_file
, or specified as an
environment variable GARAGE_RPC_SECRET
.
rpc_bind_addr
The address and port on which to bind for inter-cluster communcations (reffered to as RPC for remote procedure calls). The port specified here should be the same one that other nodes will used to contact the node, even in the case of a NAT: the NAT should be configured to forward the external port number to the same internal port nubmer. This means that if you have several nodes running behind a NAT, they should each use a different RPC port number.
rpc_public_addr
The address and port that other nodes need to use to contact this node for RPC calls. This parameter is optional but recommended. In case you have a NAT that binds the RPC port to a port that is different on your public IP, this field might help making it work.
bootstrap_peers
A list of peer identifiers on which to contact other Garage peers of this cluster. These peer identifiers have the following syntax:
<node public key>@<node public IP or hostname>:<port>
In the case where rpc_public_addr
is correctly specified in the
configuration file, the full identifier of a node including IP and port can
be obtained by running garage node id
and then included directly in the
bootstrap_peers
list of other nodes. Otherwise, only the node's public
key will be returned by garage node id
and you will have to add the IP
yourself.
The [consul_discovery]
section
Garage supports discovering other nodes of the cluster using Consul. For this
to work correctly, nodes need to know their IP address by which they can be
reached by other nodes of the cluster, which should be set in rpc_public_addr
.
consul_http_addr
and service_name
The consul_http_addr
parameter should be set to the full HTTP(S) address of the Consul server.
service_name
service_name
should be set to the service name under which Garage's
RPC ports are announced.
client_cert
, client_key
TLS client certificate and client key to use when communicating with Consul over TLS. Both are mandatory when doing so.
ca_cert
TLS CA certificate to use when communicating with Consul over TLS.
tls_skip_verify
Skip server hostname verification in TLS handshake.
ca_cert
is ignored when this is set.
The [kubernetes_discovery]
section
Garage supports discovering other nodes of the cluster using kubernetes custom
resources. For this to work, a [kubernetes_discovery]
section must be present
with at least the namespace
and service_name
parameters.
namespace
namespace
sets the namespace in which the custom resources are
configured.
service_name
service_name
is added as a label to the advertised resources to
filter them, to allow for multiple deployments in a single namespace.
skip_crd
skip_crd
can be set to true to disable the automatic creation and
patching of the garagenodes.deuxfleurs.fr
CRD. You will need to create the CRD
manually.
The [s3_api]
section
api_bind_addr
The IP and port on which to bind for accepting S3 API calls. This endpoint does not suport TLS: a reverse proxy should be used to provide it.
s3_region
Garage will accept S3 API calls that are targetted to the S3 region defined here. API calls targetted to other regions will fail with a AuthorizationHeaderMalformed error message that redirects the client to the correct region.
root_domain
The optionnal suffix to access bucket using vhost-style in addition to path-style request. Note path-style requests are always enabled, whether or not vhost-style is configured. Configuring vhost-style S3 required a wildcard DNS entry, and possibly a wildcard TLS certificate, but might be required by softwares not supporting path-style requests.
If root_domain
is s3.garage.eu
, a bucket called my-bucket
can be interacted with
using the hostname my-bucket.s3.garage.eu
.
The [s3_web]
section
Garage allows to publish content of buckets as websites. This section configures the behaviour of this module.
bind_addr
The IP and port on which to bind for accepting HTTP requests to buckets configured for website access. This endpoint does not suport TLS: a reverse proxy should be used to provide it.
root_domain
The optionnal suffix appended to bucket names for the corresponding HTTP Host.
For instance, if root_domain
is web.garage.eu
, a bucket called deuxfleurs.fr
will be accessible either with hostname deuxfleurs.fr.web.garage.eu
or with hostname deuxfleurs.fr
.
The [admin]
section
Garage has a few administration capabilities, in particular to allow remote monitoring. These features are detailed below.
api_bind_addr
If specified, Garage will bind an HTTP server to this port and address, on which it will listen to requests for administration features. See administration API reference to learn more about these features.
metrics_token
, metrics_token_file
or GARAGE_METRICS_TOKEN
(env)
The token for accessing the Metrics endpoint. If this token is not set, the Metrics endpoint can be accessed without access control.
You can use any random string for this value. We recommend generating a random token with openssl rand -hex 32
.
metrics_token
was introduced in Garage v0.7.2
.
metrics_token_file
and the GARAGE_METRICS_TOKEN
environment variable are supported since Garage v0.8.2
.
admin_token
, admin_token_file
or GARAGE_ADMIN_TOKEN
(env)
The token for accessing all of the other administration endpoints. If this token is not set, access to these endpoints is disabled entirely.
You can use any random string for this value. We recommend generating a random token with openssl rand -hex 32
.
admin_token
was introduced in Garage v0.7.2
.
admin_token_file
and the GARAGE_ADMIN_TOKEN
environment variable are supported since Garage v0.8.2
.
trace_sink
Optionally, the address of an OpenTelemetry collector. If specified, Garage will send traces in the OpenTelemetry format to this endpoint. These trace allow to inspect Garage's operation when it handles S3 API requests.